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Abstract. The DeepSpecDB project aims to define, specify and ver-
ify a high-performance concurrent in-memory database system. Based
on MassTree, it uses B+Trees, a well-studied key-value data structure.
Our sequential B+Trees library uses cursors, introduced in the database
engine SQLite. Such cursors reduce the complexity of operations when
dealing with partially sorted data. We define a Coq formal model for
such trees, then use it to specify and prove the correctness of the C
implementation using the Verified Software Toolchain.
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1 Introduction

With memory sizes increasing and prices dropping, the assumption that most of
the values of a database system must reside on disk no longer holds. This resulted
in the emergence of several Main Memory Database Systems [18], where most (or
all) of the data is in the memory. This leads to much faster database operations,
as reading from the volatile memory is typically orders of magnitude faster than
the disk, at the cost of a few changes in architecture design. For instance, the
size of memory blocks should be adapted to fit into cache lines instead of disk
sectors. Examples include MassTree [23], VoltDB [8], MemSQL [3], Hekaton,
SAP HANA and others.

MassTree [23] is an example of such Main-Memory Database System. It stores
values, indexed by keys, directly in the memory. It uses a combination of the
well-studied B+Trees (a variation of the BTrees introduced in [14]) and Tries
data structures. MassTree’s performance is similar to MemCached, and better
than VoltDB, MongoDB and Redis, other high-performance storage systems.

Formal verification of C programs has been the focus of many recent works.
In particular, CompCert [4, 21] is a fully verified C compiler in Coq [5], which
formally defines C and assembly semantics and proves that the source and com-
piled programs have equivalent behaviors. This allows for program verification at
the source level, as the compiled program is guaranteed to run as specified by the
source code. Then, the Verified Software Toolchain (VST) [7] allows you to write
specifications for C programs and formally verify in Coq that they are respected
(using the same C semantics as CompCert). VST is itself proved sound in Coq
with regards to CompCert’s semantics. VST has been used to prove correctness
of many C programs, including cryptographic primitives such as SHA-256 [13]
or OpenSSL’s HMAC [16].

This paper focuses on the implementation, specification and verification of a
B+Trees with Cursors Library. As of today, this library only deals with sequential
operations. Ideally, our data structure should allow a concurrent usage, but we
believe that the formal verification of a sequential program is a mandatory first
step towards the verification of a concurrent one. Given a formal specification of
an abstract key-value data structure with cursors and a first version of a B+Tree
with cursors implementation, the work presented here consisted in rewriting the
C code to comply with the specification, then prove it correct using VST.

Every C function of the library has been proved correct with regards to a
formal specification. The verification of the B+Tree Library has allowed us to
find several bugs in the original implementation (see Section 6).

We first present the B+Tree Structure with cursors and its implementation
(Section 3) We then define an equivalent formal model, that is used for the
verification (Section 4). We then present in Section 5 the VST verification of our
implementation. We present in Section 6 some of the bugs we encountered and
fixed while verifying the library.
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2 Related Works

This verification work is part of the DeepSpecDB project [2]. Its goal is to provide
a verified library for a high-performance concurrent Main-Memory database.
Inspired by MassTree, this database system also uses a combination of B+Trees
and Tries structures.

As part of the DeepSpecDB project, a formal Coq specification of abstract
relations with cursors has been defined in [24]. A C implementation of a se-
quential version of the database has also been done in [9]. This implementation
contains a first version of a library for B+Trees with cursors, a library for bor-
der nodes [23] and a library for Tries. The work presented in this paper is the
first verification step: it includes modifying the B+Trees library and proving it
correct with regards to the abstract specification.

Previous work has dealt with the verification of tree-like structures. Verified
Functional Algorithms [12] includes a Coq formal model for Binary-Search Trees
and its verification. Red-Black Trees have also been verified in [11]. [19] provides
a Coq correctness proof of the AVL Trees used in the Set Module of the OCaml
standard library. VST’s examples [7] include the VST verification of a C imple-
mentation of Binary-Search Trees. Recent work has been made to formalize SQL
semantics [15].

Even though the current version is sequential, we believe that implementing
concurrency would be a feasible next step. Our verification work could then be
used as a basis for the new concurrent library. Indeed, VST can also be used to
prove correctness of concurrent C programs [22].

3 B+Trees with Cursors Library

3.1 B+Trees

The first part of our work consisted in modifying a B+Trees with cursors library.
B+Trees are ordered and self-balanced. This allows for fast access to the data
(located at the leaves), as it suffices to go down the tree using the keys in the
nodes to find the next one. B+Trees have been well studied [25] and implemented
numerous times. A B+Tree example can be seen Fig. 1. The keys in the leaves
point to a record (indicated in the figure by a * next to the key). The fanout value
in this example is 4 (the maximum number of keys in each node). Every internal
node has n + 1 children, where n is its number of keys. Traditionally, B+Trees
implement cross-links between leaves, meaning that each leaf node points to the
previous and the next one. This allows for range queries as one can always find
the next record. However, because our implementation uses cursors (see below),
these links are not needed.

The available operations on a B+Tree typically include inserting a record
(associated with a key), deleting a record, accessing the record associated to a
given key (if it has been inserted) and accessing the records corresponding to a
range of keys. We briefly describe some of these operations. More details can be
found in [25].
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Insertion Takes a key and a record. If the key already exists in the B+Tree, its
associated record should be updated to the given one. Otherwise, the record is
added to the leaves. If it is inserted in a full leaf node, this node should be split
into two. Then, the middle key is copied into the parent node to point to the
new one. When inserting this new key, it is possible that the parent node was
also full. In that case, we keep on recursively splitting nodes until some parent
can accept a new entry, or the root has to be split (thus creating a new level in
the tree). This algorithm keeps the tree balanced. The complexity of inserting a
new record is O(logf (n)), where f is the fanout of the tree and n the number of
records. Indeed, the number of operations (key comparisons and node splittings)
is linear in the depth of the tree.

For instance, a record with the key 4 should be inserted in Fig. 1 in the first
leaf node (containing keys 0, 1, 2 and 3). Because this node is full, it should be
split into two: one containing 0, 1, 2, and the other containing keys 3 and 4.
Then, key 2 should be inserted into the parent node (with keys 5, 9, 12, 15).
Because this node is full too, it should be split. Because internal nodes do not
contain records, the middle key can simply be pushed to the root without being
copied. The resulting B+Tree, after insertion, can be seen in the appendix Fig 6.

20

5 9 12 15 25 30

0* 1* 2* 3* 5* 6* 7* 8* 9* 10* 11* 12* 14* 15* 18* 20* 22* 23* 25* 27* 28* 30* 33* 34* 35*

Fig. 1. A B+Tree

Accessing a Record Takes a key as input. Because the tree is ordered, it suffices
to go down from the root. At each node, the values of the keys indicate which
child to go to at the next step. The complexity is O(logf (n)), where f is the
fanout of the tree and n the number of records.

3.2 Cursors

On numerous occasions, inserting or accessing data can be done on partially
sorted keys. In this case, the operations will target and affect the same part
of the B+Tree. But this locality isn’t exploited, as the functions always start
from the root. Cursors aim to exploit the locality of operations on close keys,
by remembering the last position where the tree was modified or accessed. Then
for instance, to look for a new key, the function can start from the last accessed
leaf. If the searched key is in the same node, then the function has constant time
complexity. Otherwise, it should go up to the node’s parent before going down
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again. If the searched key is close, this should significantly reduce the number
of node accesses. Abstractly, cursors point to a position in the ordered list of
key-value pairs represented by a B+Tree. Their main purpose is to allow fast
operations that go through a B+Tree sequentially, such as range queries.

A cursor is implemented as an array of pairs. Each pair contains a pointer
to a node and an index for that node. The first node of the cursor should be
the root of the B+Tree. Then the following nodes describe a path from the root
to an entry in a leaf node. An example of cursor can be found in Fig. 2. A
cursor’s length should always be equal to the depth of the B+Tree it refers to,
thus pointing to a record. To the best of our knowledge, cursors of this kind have
been used only in the B+Trees implementation of SQLite [6].

20

5 9 12 15 25 30

0* 1* 2* 3* 5* 6* 7* 8* 9* 10* 11* 12* 14* 15* 18* 20* 22* 23* 25* 27* 28* 30* 33* 34* 35*

Fig. 2. A B+Tree with a cursor pointing to key 6

With a cursor, basic functions (insertion, accessing a record) do not start
at the root anymore, but from the leaf node that the cursor is pointing to. For
instance, when accessing the record for a given key k, if k is in the same leaf
node as the cursor, then we can fetch the associated record in constant-time.
Whenever k is not in the same leaf node, we need to go up in the B+Tree using
the previous levels of the cursor, until we reach a parent node of the desired key.
We can then go down the B+Tree until k is found. For instance, if we search for
key 14 in Fig. 2, we can first see that 14 is not in the leaf node pointed to by the
cursor (containing only keys from 5 to 8). We then go up in the B+Tree, using
the cursor, to the internal node containing 5, 9, 12 and 15. Because it contains
keys less and greater than 14, we know that this node is a parent node for 14.
Finally, we go down to the fourth child, containing keys 12 and 14, and we can
get the desired record. This new algorithm is still O(logf (n)) in the worst-case
(if we need to go up to the root of the tree, then go down to the leaves), but
is faster when looking for close keys. In particular, accessing the record of each
key sequentially has amortized constant time complexity [9].

Inserting a new record has a similar complexity. To perform range queries,
we need to introduce a new function, movetonext, that moves the cursor to the
next record in a B+Tree.
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3.3 Implementation

We modified DeepSpecDB’s implementation of B+Trees with cursors. The C
types are the following:

typedef struct Relation {

struct BtNode* root;

size_t numRecords;

int depth;

} Relation;

union Child_or_Record {

BtNode* child;

const void* record;

};

struct Entry {

Key key;

Child_or_Record ptr;

};

struct BtNode {

Bool isLeaf;

Bool First;

Bool Last;

int numKeys;

BtNode* ptr0;

Entry entries[FANOUT ];

};

struct Cursor {

Relation* relation;

int level;

int ancestorsIdx[MAX_TREE_DEPTH ];

BtNode* ancestors[MAX_TREE_DEPTH ];

};

A node contains an array of entries. Each of these entries contains the pointer
to the associated child (for internal nodes) or the associated record (for leaf
nodes). Because internal nodes need one more child than they have entries, the
node also contains ptr0 which holds the pointer to the first child (or NULL for
a leaf node). Nodes also contain booleans that indicate if the node is the first
or the last of its level in the B+Tree. This is used to speed up some functions.
Finally, a cursor has an array of ancestors (the nodes, from the root to the leaf
node pointed to) and an array of indexes locating the next child at each level.

This library contains 27 functions, all of which are verified in VST (see Sec-
tion 5). Deletion hasn’t been implemented yet. The list of all functions that can
be used by a client of the library can be seen in the appendix, Fig. 8.

4 A Formal Model for B+Trees with Cursors

In order to prove the correctness of our B+Trees library, we first need a formal
model, in Coq, for each type and function. This model will be used to specify
each C function with VST. Then, the correctness can be proved by showing that
the functions of the formal model comply with the formal specification, thus
leveraging the proof to a Coq one without C semantics.

DeepSpecDB already contained a formal model that complied with the ab-
stract relation axiomatization [24]. However, this B+Tree model does not exactly
mimic the behavior of the C code. For instance, entries of the C implementa-
tion contain a pointer to the child with greater keys. Then, the node contains
a pointer to the first child. However, in this formal model, each entry contains
a node which keys are lesser, and the node holds the pointer to the last child.
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Moreover, the First and Last booleans used to speed up the functions are not
present in each node, and not used in the functions. As a result, we decided to
define another formal model, as close as possible to the C code. This new formal
model will be used to specify the C functions with VST.

(* Btree Types *)

Inductive entry (X:Type): Type :=
| keyval: key → V → X → entry X

| keychild: key → node X → entry X

with node (X:Type): Type :=
| btnode: option(node X)→ listentry X→ bool→ bool→ bool→ X→ node X

with listentry (X:Type): Type :=
| nil: listentry X

| cons: entry X → listentry X → listentry X.

Definition cursor (X:Type): Type := list (node X ∗ index). (* ancestors and index *)

Definition relation (X:Type): Type := node X ∗ X. (* root and address *)

Fig. 3. Coq Formal Model Types

Types Fig. 4 presents the Coq Types for B+Trees, cursors and relations. We
can see that entries have a key, and either a record (of type V) or a child (of type
node X). Nodes have three booleans, representing the isLeaf, First and Last

of the C code. The ptr0 of a node is represented with an option, as Leaf Nodes
don’t have any. These types are parametrized by a type X, that can be either
val or unit. An explanation is given section 5.2.

A cursor is implemented in Coq as a list of nodes and indexes. This corre-
sponds to the arrays found in the C code. The list starts at the root and its head
is the current node and index. Its length indicates the cursor’s depth. Finally, a
relation is simply a root (node) and the address at which the representation is
in the memory.

Functions Then, each C function must have an equivalent in the formal Coq
model. For instance, Fig. 4 presents the Coq moveToFirst function. It takes as
input the next node to go down to. If this node is a Leaf Node, then it returns
the cursor with the new node, and the index 0 (pointing to the first record).
Otherwise, it goes down ptr0, and adds to the cursor the next node and the
index im (representing -1).

5 VST Verification of B+Trees with Cursors

5.1 Using the Verified Software Toolchain

The Verified Software Toolchain uses Verifiable C to prove correctness of C pro-
grams. Verifiable C consists of a language and a program logic. The language of
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(* takes a PARTIAL cursor, n next node (pointed to by the cursor)

and goes down to the first key *)

Fixpoint moveToFirst {X:Type} (n:node X) (c:cursor X) (level:nat): cursor X :=
match n with

btnode ptr0 le isLeaf First Last x ⇒
match isLeaf with

| true ⇒ (n,ip 0)::c
| false ⇒ match ptr0 with

| None ⇒ c (* not possible, isLeaf is false *)

| Some n’ ⇒ moveToFirst n’ ((n,im)::c) (level+1)
end

end

end.

Fig. 4. MoveToFirst in the formal model

Verifiable C is a subset of CompCert’s Clight [1]. Clight was introduced as an in-
termediate language in CompCert, where all expressions are pure and side-effect
free. The program logic of Verifiable C is a higher-order Separation Logic [26]
(an extension of Hoare Logic [20]). VST includes many tools, proved theorems
and Coq tactics to assist the user in writing a forward separation logic proof
in Coq that relates Clight’s semantics (as defined in CompCert) and a formal
specification.

When proving the correctness of a C program, a VST user should first gen-
erate an equivalent Clight program. CompCert includes the clightgen tool to
do so. Then, the user should write a specification in Coq for each C function.
Finally, the user can prove the correctness of each function separately.

Verifiable C’s Separation Logic. Hoare Logic has been extensively stud-
ied and used. The correctness of a program is represented by a Hoare triple
{P} c {Q}, where P and Q are formulas (respectively called precondition and
postcondiction), and c is a program. Hoare Logic’s simple rules allow to derive
Hoare triples. For instance, the composition rule states that, if {P} c1 {Q} and
{Q} c2 {R} hold, then {P} c1; c2 {R} holds.

Separation Logic is an extension of Hoare Logic. Correctness is still modeled
with a triple {P} c {Q}. However, the formulas for preconditions and postcon-
ditions are augmented with a new operator ∗. Informally, P1 ∗ P2 means that
the heap (or memory) can be split into two disjoint parts, one where P1 holds,
and another where P2 holds. This operator is convenient when dealing with mul-
tiples objects in the memory. For instance, if btnode rep(n, p) means that the
node n is represented in the memory at address p, then btnode rep(n1, p1) ∗
btnode rep(n2, p2) means that the two nodes are in the heap, at different ad-
dresses (in particular, p1 6= p2). Without this operator, one would have to add
many propositions of the form p1 6= p2 when describing multiple objects in the
heap, making the proof harder. Separation Logic also defines the magic wand
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operator −∗. Informally, P −∗ Q means that if the heap is extended with a
disjoint part where P holds, then Q holds on the total heap. This is particularly
useful to extract information from a separation construct, as seen in Section 5.3.

Function Specification in Verifiable C. In Verifiable C, a precondition or
postcondition formula consists in three sets: PROP, LOCAL and SEP. PROP contains
assertions of type Prop in Coq. LOCAL binds local variables to values. For instance,
one could write temp a (Vint(Int.repr 0)) to state that local variable a

is bound to 0. SEP contains spatial assertions in separation logic. Writing P;Q

in SEP means that P ∗ Q holds. Fig. 5 shows one of our specifications. The
precondition contains several requirements, like next node c (get root r) =

Some n, meaning that n is the node pointed to by the partial cursor. Comparing
the SEP clauses of the precondition and postcondition allows to understand what
happens in the memory. Here, the relation is unchanged, while the cursor is
modified to represent the one returned by the Coq function moveToFirst (see
Fig. 4).

Definition moveToFirst_spec : ident ∗ funspec :=
DECLARE _moveToFirst

WITH r:relation val, c:cursor val, pc:val, n:node val

PRE[ _node OF tptr tbtnode, _cursor OF tptr tcursor, _level OF tint ]
PROP(partial_cursor c r; next_node c (get_root r) = Some n)
LOCAL(temp _cursor pc; temp _node (getval n);

temp _level (Vint(Int.repr(Zlength c))))
SEP(relation_rep r; cursor_rep c r pc)

POST[ tvoid ]
PROP()
LOCAL()
SEP(relation_rep r; cursor_rep (moveToFirst n c (length c)) r pc).

Fig. 5. Formal Specification of the moveToFirst function

5.2 Augmented Types

For each formal type, we need a representation predicate to specify how it is
represented in the memory. For instance, in the VST verification of Binary-
Search Trees [7], the predicate tree_rep (t: tree val) (p: val) : mpred is defined.
Such predicates relate a formal structure to a statement on the content of the
memory. However, this statement (of type mpred) holds more information than
the formal model.

For instance, consider the following linked list in a C program:

a0 q0 a1 q1 a2 nullval
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This list is a representation of the formal list [a0, a1, a2]. Each element con-
tains a pointer to the following one. The pointers q0, q1 should not appear in the
formal model but are needed by the representation predicate. One should write
listrep such that this additional representation information is hidden from the
user.

The usual way to do that in VST (or in any separation logic) consists in
existentially quantifying over these values. For instance, one could write:

Fixpoint list_rep (l:list A) (p:val) : mpred :=
match l with

| [ ] ⇒ emp

| ai:: l’ ⇒ EX pi:val, cell_rep ai pi p ∗ list_rep l’ pi
end.

Where cell_rep ai pi p means that there exists a cell in the memory con-
taining value ai and pointer pi at address p. list_rep l p describes that list
l is represented in the memory, starting at address p. This is convenient for
many data-structures. However, if an external data-structure holds pointers to
the cells, we would want the values of such pointers to be the same as the ones
quantified over. For instance, if some structure contains a pointer to the cell
containing a1, we need the pointer to be equal to q0. But with the previous
definition of list_rep, q0 isn’t known outside of the quantifier’s scope.

We suggest using an augmented type for lists that holds both the formal
model and the additional representation information. We first define the type
concrete_list as Definition concrete_list A : Type := list (A ∗ val). We then
write an erasure function of type concrete_list A → list A (here the function
map fst). We can change list_rep as follows:

Fixpoint list_rep (l:concrete_list A) (p:val) : mpred :=
match l with

| [ ] ⇒ emp

| (ai,pi):: l’ ⇒ cell_rep ai pi p ∗ list_rep l’ pi
end.

Finally, the formal structure of a pointer to a cell is an augmented cell (an
element of the augmented list, of type A * val) and its representation can use
the val, which is guaranteed to be the address of the cell in the memory.

In our B+Trees library, we have cursors containing pointers to subnodes of a
B+Tree. We thus define a general B+Tree type, as seen on Fig. 4, parametrized
with a type X. Finally, we define the following types:
Definition concrete_tree : Type := node val.

Definition abstract_tree : Type := node unit.

We then define a representation predicate on augmented trees and augmented
cursors (in the appendix, Fig. 9). We also prove multiple lemmas about these
representations. For instance, if a node is represented in the memory at some
address p, then p is a valid pointer.
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5.3 B+Trees Verification

We define properties of the B+Trees and cursors that are required to prove
correctness. Such definitions include partial cursor c r, meaning that c is a
correct cursor for relation r that stops at an internal node. By correct, we mean
that each node is the nth child of the previous node, where n is the previous
index.

We then prove multiple lemmas to help us reason with the memory rep-
resentations of each structure. For instance, the function currNode returns a
pointer to the last node of a cursor. In the verification proof, we need to access
this pointer by proving that the current node is represented somewhere in the
memory. However, the function precondition only states that the root node is
represented in the memory. To solve this, we first need to prove that the current
node is a subnode of the root. This is done by proving the following theorem:

forall X (c:cursor X) r,
complete_cursor_correct_rel c r → subnode (currNode c r) (get_root r)

We then need to prove that, if a node root is represented in the heap, and
some other node n is a subnode of root, then n is also represented in the heap.
This is true because the function btnode rep calls itself recursively on each
child (see Fig. 9). However, because btnode rep is a separating clause, we can’t
simply use an implication. We need to rewrite it as a separation conjunction.
This is done by proving the following theorem, subnode rep:

forall n root, subnode n root →
btnode_rep root = btnode_rep n ∗ (btnode_rep n −∗btnode_rep root)

This separating conjunction means that some part of the heap contains the
subnode n, and a disjoint part contains the rest of the B+Tree. Here, instead of
defining another formal structure for an incomplete B+Tree, we use the magic
wand operator. After proving many such theorems and writing every function
specification (see Fig. 5), we need to prove the correctness of each function.
These proofs consist in proving a Separation triple {P} c {Q}, where P and
Q are the precondition and postcondition defined in the specification, and c is
the Clight function. Each triple is proved by moving forward through c. For
instance, if the first instruction of c is an assignment a:=0, using the forward

tactic of VST will turn the proof goal {P} a=0; c′ {Q} into {P ′} c′ {Q}, where
P ′ is the strongest provable postcondition: P with the new LOCAL binding temp

a (Vint(Int.repr 0)). Occasionally, other goals have to be proven. Every
time an array is accessed, we must prove that the index is in the right range.
Every time a pointer is dereferenced, we must prove that it is valid. Even if
VST is able to infer the next precondition to use for sequences of instructions,
we must still provide loop invariants when going through a loop or a branching
statement. When calling another function of the B+Trees library, we must prove
that the precondition of this function holds. Finally, when we went through every
statement of c, we are left with a goal {P} skip {Q}, where Q is the function
postcondition, and P is the new precondition obtained after moving through
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the program. Such goals amount to logical entailments (P ` Q) and are proved
using separation logic rules implemented in VST.

5.4 Results

Every C function has been proved correct using VST with regards to its speci-
fication. There are still some admitted theorems that are used in these proofs.
However, these are results about the formal model, and could all be proved with-
out knowledge of VST or C semantics. The library, formal model and correctness
proofs can all be found in the DeepSpecDB repository [2]. Overall, this repre-
sents more than 7 kloc of Coq and 1 kloc of C. In the appendix, Section 8.5
presents the VST proof of the function creating a new node.

6 Bugs of the original C implementation

Working on the verification of the B+Trees library has allowed us to find and fix
some bugs. This demonstrates the benefits of formal verification: even though
the library originally came with numerous tests, some bugs were only found
when working with VST.

Wrong Array Access Originally, the library included a function, findChildIndex.
Given a key and a sorted list of entries, this simple function would return the
index at which the key should be inserted. It was used to go down the tree or
insert a new key and record. Because that function could be called on internal
nodes, it could return −1, if the key was strictly less than any key in the entry
list. When going down the tree, it would mean that the next node to consider
was the ptr0 of the current node.

However, that function was also called on leaf nodes, that do not have a
ptr0. Then, in the insertion function, to check if the key was already inside the
relation, we could see the following line for leaf nodes:

if (node ->entries[targetIdx ].key == key)

where targetIdx was the return value of findChildIndex. This means that the
array could sometimes be accessed at index -1.

We fixed this issue by implementing another function findRecordIndex used
on leaf nodes, which is formally proved to return a positive number.

Constructing Cursors for a New Key Another issue arose when building a new
cursor for a key that wasn’t already in the B+Tree. According to the formal
specification, doing so should create a cursor that points just before the next
key in the B+Tree. This means in particular that building such a cursor, then
using the GetRecord function should return the record of the next key (if any).

However, in the original implementation, this wasn’t enforced. Indeed, if the
built cursor was at the end of a leaf node, the GetRecord function would access
the last record of this node, instead of moving to the next leaf node. An example
is given in the appendix, Section 8.2.
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This was fixed by introducing equivalent positions for the cursor in a B+Tree.
Informally, a cursor pointing at the end of a leaf node is equivalent to the one
pointing at the beginning of the next leaf node. Previously, there was no differ-
ence between pointing at the last key of a node and after this key. This change
requires the MoveToNext function to move to the next position twice if the cursor
is pointing at the end of a leaf node. This isn’t an issue for the complexity, as
one of these moves is guaranteed to be constant-time.

Reducing complexity The original implementation of the MoveToKey function used
to start from the root of the B+Tree, thus not exploiting the current position of
the cursor. This was modified. Similarly, the insertion function did not split the
nodes exactly in the middle if the fanout value was even. This does not affect
the correctness of the B+Tree (which is still sorted and balanced) but can lead
to a bigger depth on average, thus increasing the complexity of each function.

Structure Changes Working on the verification gave us the opportunity to clarify
the entire structure of the implementation. We changed the types of B+Trees to
remove superfluous fields. We factorized some functions. We clarified the notion
of invalid cursor. Overall, more than 70% of the original library was rewritten.

Other changes for the verification Other changes were made to the original
library to make verification possible. For instance, VST doesn’t allow to verify
an assignment where the type is a user-defined structure. We had to replace each
entry copy (in the splitnode function for instance) with copies of each field, in
order to prove the correctness.

Wrong function call The implementation of moveToPrevious used to call moveToFirst
instead of movetToLast, meaning that the cursor would be moved several posi-
tions backward. Because this function wasn’t tested, this simple bug was only
found when doing the verification.

7 Conclusion and Future Work

We defined a Coq formal model for B+Trees with cursor, and proved using VST
that the C implementation is correct with regards to this model. The verification
work has allowed us to find and fix several bugs. Some properties of the formal
model have yet to be proved. An example of such properties is that any complete
cursor’s length is equal to the depth of its tree. We are confident that these
admitted theorems should be provable. All of these proofs only deal with the
formal model, and could be done without using VST.

Like MassTree [23], DeepSpecDB uses the B+Trees library as a client to a
Trie Library. A proof of this Trie library using VST is ongoing. The proof uses
the abstract relation specification described in [24], and a proof that the formal
model described in this work complies with it.

A feasible next step would be to implement and verify a concurrent library.
We believe that both the implementation and the verification proof could be
based on the work that has been presented in this paper.
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8 Appendix

8.1 B+Tree insertion

9 20

2 5 12 15 25 30

0* 1* 2* 3* 4* 5* 6* 7* 8* 9* 10* 11* 12* 14* 15* 18* 20* 22* 23* 25* 27* 28* 30* 33* 34* 35*

Fig. 6. The B+Tree of Fig. 1 after inserting a new record for key 4

8.2 Moving a cursor to a new key

5 9 11

1* 2* 3* 5* 6* 7* 9* 10* 11* 15*

Fig. 7. Moving the cursor to key 4

In the B+Tree Fig. 7, moving the cursor to key 4 should make it point to
the end of the first leaf node. Then, in the original implementation, accessing
the record pointed to by the cursor would return the one associated with key
3. According to the abstract specification, the returned value should be the one
associated with the next key (here, 5).
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8.3 B+Trees with cursors library

The functions that can be used by a client of the library are:

• Relation_T RL_NewRelation(void); creates a new, empty relation.
• Cursor_T RL_NewCursor(Relation_T relation); creates a cursor for a given re-

lation, pointing to the first key.
• Bool RL_CursorIsValid(Cursor_T cursor); returns true if the cursor is pointing

to a key.
• Key RL_GetKey(Cursor_T cursor); returns the key pointed to by a cursor.
• const void* RL_GetRecord(Cursor_T cursor); returns the record pointed to by

a cursor.
• void RL_PutRecord(Cursor_T cursor, Key key, const void* record);

inserts a new record.
• Bool RL_MoveToKey(Cursor_T cursor, Key key); moves the cursor to a given

key.
• Bool RL_MoveToFirst(Cursor_T btCursor); moves the cursor to the first key.
• void RL_MoveToNext(Cursor_T btCursor); moves the cursor to the next position.
• void RL_MoveToPrevious(Cursor_T btCursor); moves the cursor to the previous

position.
• Bool RL_IsEmpty(Cursor_T btCursor); returns true if the B+Tree of the cursor

is empty.
• size_t RL_NumRecords(Cursor_T btCursor); returns the number of keys in the

B+Tree.

Fig. 8. B+Trees Library Functions
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8.4 Representation of B+Trees in Separation Logic

Fixpoint entry_rep (e:entry val): mpred:=
match e with

| keychild _ n ⇒ btnode_rep n

| keyval _ v x ⇒ value_rep v x

end

with btnode_rep (n:node val):mpred :=
match n with btnode ptr0 le b First Last pn ⇒
EX ent_end:list(val ∗ (val + val)),
malloc_token Tsh tbtnode pn ∗
data_at Tsh tbtnode (Val.of_bool b,(

Val.of_bool First,(
Val.of_bool Last,(
Vint(Int.repr (Z.of_nat (numKeys n))),(
match ptr0 with

| None ⇒ nullval

| Some n’ ⇒ getval n’
end,(
le_to_list le ++ ent_end)))))) pn ∗

match ptr0 with

| None ⇒ emp

| Some n’ ⇒ btnode_rep n’
end ∗
le_iter_sepcon le

end

with le_iter_sepcon (le:listentry val):mpred :=
match le with

| nil ⇒ emp

| cons e le’ ⇒ entry_rep e ∗ le_iter_sepcon le’
end.

Fig. 9. Representing a B+Tree node in the memory
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8.5 A VST proof

static BtNode* createNewNode(Bool isLeaf , Bool First , Bool Last) {

BtNode* newNode;

newNode = (BtNode *) surely_malloc(sizeof (BtNode ));

if (newNode == NULL) {

return NULL;

}

newNode ->numKeys = 0;

newNode ->isLeaf = isLeaf;

newNode ->First = First;

newNode ->Last = Last;

newNode ->ptr0 = NULL;

return newNode;

}

Fig. 10. The C code for creating a new node

Definition empty_node (b:bool) (F:bool) (L:bool) (p:val):node val := (btnode val) None (nil val) b F L p.

Definition createNewNode_spec : ident ∗ funspec :=
DECLARE _createNewNode

WITH isLeaf:bool, First:bool, Last:bool
PRE [ _isLeaf OF tint, _First OF tint, _Last OF tint ]
PROP ()
LOCAL (temp _isLeaf (Val.of_bool isLeaf);

temp _First (Val.of_bool First);
temp _Last (Val.of_bool Last))

SEP ()
POST [ tptr tbtnode ]
EX p:val, PROP ()
LOCAL (temp ret_temp p)
SEP (btnode_rep (empty_node isLeaf First Last p)).

Fig. 11. Creating a new node in the formal model and specification of the C function
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Lemma body_createNewNode: semax_body Vprog Gprog f_createNewNode createNewNode_spec.
Proof.
start_function.
forward_call (tbtnode). (* t’1=malloc(sizeof tbtnode) *)

− split. simpl. rep_omega.
split; auto.
− Intros vret.
forward_if (PROP (vret6= nullval)
LOCAL (temp _newNode vret; temp _isLeaf (Val.of_bool isLeaf);
temp _First (Val.of_bool First); temp _Last (Val.of_bool Last))
SEP (malloc_token Tsh tbtnode vret ∗ data_at_ Tsh tbtnode vret)).
+ forward. (* return null *)

+ forward. entailer!.
+ Intros.
forward. (* newNode→ numKeys = 0 *)

unfold default_val. simpl.
forward. (* newnode→ isLeaf=isLeaf *)

forward. (* newnode→ First=First *)

forward. (* newnode→ Last=Last *)

forward. (* newnode→ ptr0=null *)

forward. (* return newnode *)

Exists vret. entailer!.
Exists (list_repeat Fanout (Vundef, (inl Vundef):(val+val))).
simpl. cancel.
apply derives_refl.

Qed.

Fig. 12. Proving the function correct with VST


