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Formally verified static compilation

1 11

Veri�ed static compilers

CompCert [Leroy 2006], CakeML [Kumar et al. 2014], VeLLVM [Zhao et al. 2012].
Compilation happens statically: the code is produced before its execution.

JIT compilation

Interleave execution and optimization of the program.
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Executing a program with a JIT with speculative optimizations

Execution
Stack

Interpreter: f

Interpreter: gOptimizing
Compiler
g_x86 Speculation fails

Interpreter: g On-stack replacement

Program

Function f():
while (...):
g()

Function g():
g1
g2

Function g_x86():
g1
Speculation (x=7)
g2’

Deoptimization requires the JIT to
Synthesize interpreter stackframes in the middle of a function.
Possibly synthesize many stackframes at once.

With speculation, JITs need precise execution stack manipulation.
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Formally Verified JIT Compilation

Our Goals

A veri�ed and executable JIT in Coq.
With native code generation and execution.
With speculation and on-stack replacement.
Using CompCert as a backend compiler.
Reusing CompCert’s proof and its proof methodology.
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Towards A Formally Verified JIT middle-end

JIT-speci�c veri�cation problems

Speculative optimizations.
Dynamic Optimizations interleaved with execution.
Impure and non-terminating components.
Integrate the correctness proof of a static compiler backend.

Previous Work: Formally veri�ed speculation and deoptimization in a JIT compiler, POPL21

Aurèle Barrière, Sandrine Blazy, Olivier Flückiger, David Pichardie, Jan Vitek.
https://github.com/Aurele-Barriere/CoreJIT

CoreIR, inspired by RTL and speculative instructions ([Flückiger et al. 2018]).
Correctness theorem of CoreJIT with interpretation, dynamic optimizations, and speculations.

A theorem about IR to IR transformation. No native code generation in the formal model.
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A JIT Architecture
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JIT architecture
Extends the architecture from [Barrière et al.
2021] with native code generation and execution.

JIT loop

The monitor chooses the next step: execution or
optimization.
Pro�ling: records information about the
execution and suggest speculations.
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Interpreter

Interpret the IR code that has not been compiled
to native.
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Middle-end Optimizer

From the IR to the IR.
Inserts speculation.

POPL21
The correctness theorem of our previous work is
about these components.
A Coq proof that any behavior of this JIT
prototype is a behavior of the input program.
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Backend Compilation

Generates native code, as in a static compiler
backend.
Use the CompCert backend from RTL to x86.

Code Installation
Install the dynamically generated code in
memory.
Make it executable.
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Setting up native execution

Get a function pointer for the installed code.

Native Code Execution
Run the generated code.
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Can we really write a JIT in Coq?

Some JIT components are impure.
Global shared data-structures: execution stack
and executable memory.
The call to native code may even be
non-terminating.
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Can we really write a JIT in Coq?

Some JIT components are impure.
Global shared data-structures: execution stack
and executable memory.
The call to native code may even be
non-terminating.

The Free Monad
Interaction Trees [Xia et al. 2020] and
FreeSpec [Letan and Régis-Gianas 2020] use a
variation of the free monad to reason about
impure programs in Coq.



The Free Monad

Representing programs where some impure primitives
have yet to be implemented.

Inductive free (T :Type) : Type :=
| pure (x : T) : free T
| impure {R}
(prim : primitive R) (next : R→ free T): free T.

With di�erent primitive implementations, the program
can be executed di�erently.
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Our strategy for a verified executable impure JIT

The Free JIT
A Free JIT without primitive implementations.
Given speci�cations, de�ne small-step semantics.
Extract to OCaml with impure implementations.

Inspired by the Free Monad, but adapted to �t the
simulation framework of CompCert.
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Writing a JIT with the Free Monad

Every JIT component can be written as a Free Monad:

Definition optimizer (f:function) : free unit :=
do f_rtl← ret (IRtoRTL f);
do f_x86← ret (backend f_rtl); (* using CompCert backend *)
Prim_Install_Code f_x86.

New Calling Conventions

We need to reason on and manipulate the execution stack (deoptimization). Our JIT works on a
custom execution stack, that only the JIT modi�es.
We need to implement new calling conventions on this custom stack. The generated native code
needs to call our primitives.
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Generating Native Code using Primitives

Generating Several RTL Programs

Generating RTL code that uses custom calling
conventions with our primitives.

Primitives are external calls.
Each RTL function returns to the
monitor.
One Continuation per Call instruction.
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JIT Primitives

Stack Primitives

Pop and Push
Push and pop entire interpreter stackframes

Code Segments Primitives

Install a native function in the executable memory.
Load a function (or one of its continuations).
Check if a function has been compiled.

Running Native Code

We de�ne a special primitive to run native code.
Its speci�cation is a monad describing the small-step semantics of x86 code.
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Conclusion

A Free JIT

We can derive both small-step semantics and an executable OCaml JIT (ongoing).
Native code generation and execution are part of the formal model.
A correctness proof of the JIT small-step semantics.
We reuse the simulation methodology of CompCert.
We would like to reuse the simulation proof of CompCert’s backend (ongoing).

Trusted Code Base

Coq extraction to OCaml.
The primitive impure implementations correspond to their monadic speci�cations.
The call to the generated native code has been speci�ed with a free monad.
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