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Modern regex languages have strayed far from well-understood traditional regular expressions: they include

features that fundamentally transform the matching problem. In exchange for these features, modern regex

engines at times suffer from exponential complexity blowups, a frequent source of denial-of-service vulnera-

bilities in JavaScript applications. Worse, regex semantics differ across languages, and the impact of these

divergences on algorithmic design and worst-case matching complexity has seldom been investigated.

This paper provides a novel perspective on JavaScript’s regex semantics by identifying a larger-than-

previously-understood subset of the language that can be matched with linear time guarantees. In the process,

we discover several cases where state-of-the-art algorithms were either wrong (semantically incorrect),

inefficient (suffering from superlinear complexity) or excessively restrictive (assuming certain features could

not be matched linearly). We introduce novel algorithms to restore correctness and linear complexity. We

further advance the state-of-the-art in linear regexmatching by presenting the first nonbacktracking algorithms

for matching lookarounds in linear time: one supporting captureless lookbehinds in any regex language,

and another leveraging a JavaScript property to support unrestricted lookaheads and lookbehinds. Finally,

we describe new time and space complexity tradeoffs for regex engines. All of our algorithms are practical:

we validated them in a prototype implementation, and some have also been merged in the V8 JavaScript

implementation used in Chrome and Node.js.

CCS Concepts: • Theory of computation→ Regular languages; Design and analysis of algorithms.
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1 INTRODUCTION
The expressive power and computational complexity of traditional regular expressions (composed

only of characters, concatenations, alternations, and Kleene stars) are well understood. From an

expressive-power standpoint, they are known to be exactly equivalent to finite automata. From a

computational-complexity standpoint (deciding whether a regular expression 𝑟 matches a string 𝑠),

well-known trade-offs exist between pre-processing and matching time. For instance, one can create

a deterministic finite automaton (DFA) for 𝑟 in worst-case time complexityO
(
2
|𝑟 | )

and then perform

matching in O (|𝑠 |), where |𝑟 | and |𝑠 | represent the respective lengths of 𝑟 and 𝑠 . Alternatively,

to avoid the expensive cost of determinization, one can instead create a nondeterministic finite

automaton (NFA) for 𝑟 [Thompson 1968] in O (|𝑟 |) and then perform matching with worst-case

time complexity O (|𝑟 | × |𝑠 |) [Cox 2007; Pike 1987].
Modern regular expressions, which we call regexes to differentiate them from traditional ones,

have strayed far from their ancestors: they are significantly more complex and expressive, but

much less well studied. Their nontraditional features have allowed them to become one of the most

pervasive embedded domain-specific languages in programming: one study found them inmore than

30% of npm and PyPI packages [Davis et al. 2018]; another in 42% of Python developments [Chapman

and Stolee 2016]; and 8 of the top 10 Tiobe languages support them natively [TIOBE 2023]. One

crucial extension is the introduction of capture groups, requiring regex engines to return not only

whether there is a match, but also which part of the input string matches each sub-expression inside

parentheses. For instance, when matching /(a*)b/ on "caabd", modern regex engines report

a match on sub-string "aab", and a sub-match on "aa" for the capture group /(a*)/. Capture
groups fundamentally transform the problem from one of language recognition to one of pattern

matching: traditional regular expression matching checks whether an input string belongs to

a formal language, whereas modern regex matching computes the positions of the sub-strings
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matched by the regex and each of its capture groups. As such, regexes represent not a language,

but a way to search and segment a piece of text. This problem is often ambiguous, so modern regex

languages define priority rules to deterministically disambiguate results when a regex can match

a string in multiple ways. For instance, when matching /(a|a*)/ on "aa", most modern regex

engines give priority to the left branch of the alternation and return a match only on the first letter

(this differs from the longest-match semantics often found in lexers).

Other modern features include backreferences, lookarounds (lookaheads and lookbehinds, both

positive and negative), anchors, character classes, and repetition. Backreferences force a later

part of a regex to match the same substring as an earlier group: for instance, /(a*)b\1/ matches

"aabaa" but not "aaba", as \1 matches exactly the sub-string captured by the first group /(a*)/.
Lookarounds condition a match without consuming the corresponding characters: for instance, the

regex /(?<=£)1/ matches the character "1" in "£1.2" and does not match anything in "v1.2"
(the "£" that is checked for by the lookbehind is not included in the final match). Anchors ˆ , $, and
\b match at the beginning and end of the string or at a word boundary, character classes match

ranges of characters (e.g., [a-e] matches any character between a and e), and counted repetition

repeat the same regex multiple times ((a|b){4,8} matches any combinations of 4 to 8 "a" and

"b"). To illustrate the convenience of these features together, the regex /(?<=PLDI)[0-9]{2,4}/
matches the year of a reference to a PLDI paper (e.g., "2024" in "PLDI2024").

These nontraditional features and their interplay are only partially understood. It is well-known,

for example, that backreferencesmake thematching problemNP-hard [Aho 1990; Dominus 2000]. At

the other end of the spectrum, linear-time algorithms are in common use for features such as capture

groups, anchors and character classes [Gallant 2014; Google 2022]. In-between is uncertainty: to the

best of our knowledge, no such matching complexity result has been stated for, e.g., lookarounds

with capture groups.

Accordingly, modern regex engines fall into two categories. Backtracking engines support all

features (including backreferences) but suffer from algorithmic blowups — even on simple patterns

composed exclusively of traditional features for which linear-time algorithms are known. This

disastrous worst-case performance has serious security implications, ranging from partial service

degradation to complete outages of large websites [Cloudflare 2019; Stack Exchange 2016]. A recent

study [Staicu and Pradel 2018] estimated that 12% of JavaScript-based web servers are vulnerable

to regex-based denial-of-service attacks, or “ReDoS”.

These security concerns and complexity issues have led to revived interest in engines that

match regexes with worst-case linear time guarantees, in exchange for a reduced feature set (no

backreferences nor lookarounds [RE2 2017]) [Gallant 2023; Toub 2022]. Interest in these linear

engines is causing a paradigm shift: an increasing number of platforms and languages are now

either secure-by-default with linear engines (Rust [Gallant 2014] and Go, and any language linking

to the popular RE2 library), or at least offer the possibility to switch to a linear engine for a subset

of regexes (.NET [Moseley et al. 2023]). Our work demonstrates that this same paradigm shift is

applicable to JavaScript, and that the expressivity tradeoff is less dire than previously believed.

Unfortunately, even in the new, safer world, the word linear still hides a lot of variability: some

engines aim for linearity in just the input string length (e.g. .NET, so that performing matching in

O
(
|𝑟 |2 × |𝑠 |

)
is acceptable), whereas others attempt to guarantee linear execution in both |𝑟 | and

|𝑠 | (e.g. Rust) and are therefore suitable for user-provided regexes or regexes derived from user

input (for instance, Google Sheets evaluates user-provided regexes with RE2). Our work achieves

both regex- and string-linear performance.

To make matters worse, different regex languages make different semantic design choices when

it comes to these nontraditional features [Davis et al. 2019] and regexes written for a language are

not always portable to another one: quantifiers (*, +, ?) and capture groups have different semantics
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in JavaScript and Perl, most valid lookarounds in .NET and JavaScript are not valid in Python, Perl

or Java (which prevent the use of quantifiers inside lookarounds as in /(?<=ba*)/), etc. The impact

of these semantic design choices on matching complexity is not well understood.

This problem has several consequences. From a programming language design point of view,

the situation is dire. If we ever want to design expressive but secure regex languages, we need

a better understanding of the worst-case complexity of each nontraditional feature, under each
semantic design choice. The situation is no better from a programming language implementation

standpoint: even for features and semantics thought to be well understood in practice, our research

shows that multiple deployed implementations make invalid algorithmic assumptions. In particular,

we found that some features commonly assumed not to be matchable in linear time could in fact

be supported by linear engines; that algorithms assumed to be linear were in fact not; and that

deployed algorithms assumed to be applicable to modern regex languages led to semantically

incorrect results. The following sections provide concrete examples of all three cases.

Our work focuses on the JavaScript regex language; its semantics is specified in the ECMAScript

standard by means of a pseudocode backtracking algorithm [ECMA-262 2024]. Javascript supports

many nontraditional regex features, including capture groups, backreferences and lookarounds,

yet its semantics also make some atypical choices (§3.2) that separate it from other languages and

impact matching complexity (§4.5). All JavaScript regexes engines that we could find, except one,

use a backtracking implementation strategy [Chromium 2009; DukTape 2013; Hermes 2022; MuJS

2014; QuickJS 2020; WebKit 2018]. The exception is V8 (the JavaScript implementation used in

Google Chrome and Node.js), which has two engines: a full-featured backtracking engine called

Irregexp [Chromium 2009], and a linear engine with support for almost all of JavaScript regex

constructs except backreferences and lookarounds, which we call “V8Linear” [V8 2021], available

through a command-line flag.
1
To the best of our knowledge, V8Linear is the only industrial-strength

linear-time implementation of a significant subset of JavaScript regexes.

Our work answers the following research questions: Which part of the JavaScript regex language

can be matched with linear worst-case time complexity? Can we get linearity in both the size of

the regex and the size of the string O (|𝑟 | × |𝑠 |) ? To what extent the semantic choices done in

JavaScript have an impact on what features can be matched linearly?

Our contributions can be summarized as follows:

• We provide a novel understanding of JavaScript regex semantic properties, by identi-

fying a large subset of JavaScript regexes that can be matched in linear time O (|𝑟 | × |𝑠 |).
We show that JavaScript’s semantics for nullable quantifiers (*,+,?) is incompatible with

traditional linear-matching techniques, and we present a way to adapt these techniques

to achieve linearity. We further show that several JavaScript features (nullable plus and

capture groups inside quantifiers) were not implemented linearly in the size of the regex in

V8Linear and we present new algorithms to match most of these features linearly.

• We introduce the first nonbacktracking algorithms for matching lookarounds, show-
ing that traditional linear engines are too conservative in their feature set. We present

an algorithm to match lookbehinds not containing capture groups in linear time that is

independent of JavaScript’s semantics and could be applied to other regex languages. We

then show how to leverage a JavaScript-specific semantic property to match unrestricted

lookarounds with capture groups in linear time, albeit with additional memory complexity.

To the best of our knowledge, this is the first time that linear algorithms for lookarounds

with capture groups have been presented and implemented.

1
Mozilla recently abandoned the development of the regex engine used in Firefox and replaced it with Irregexp, owing to

the complexity of JavaScript regex engines [Ireland 2020].
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• We provide practical implementations for all our algorithms, showing that they are

generally applicable and that their complexity can be validated through experiments. We

implemented several of our algorithms in V8Linear,
2
with some having been merged and

released in V8 already. We also present OCaml prototype implementations for all of the

algorithms presented in this paper, together supporting a very large fragment of JavaScript

regexes. This prototype provides an ideal playground for implementation experimentation

and we use it to exhibit a novel trade-off between space complexity and time complexity

for capture groups.

JS Regex Feature V8Linear (state of the art) Our new complexity
Nullable quantifiers incorrect O (|𝑟 | × |𝑠 |) § 4.1

Capture Groups in Quantifiers O
(
|𝑟 |2 × |𝑠 |

)
O (|𝑟 | × |𝑠 |) § 4.2

Nonnullable Plus O
(
2
|𝑟 | × |𝑠 |

)
O (|𝑟 | × |𝑠 |) § 4.5

Nullable Greedy Plus O
(
2
|𝑟 | × |𝑠 |

)
O (|𝑟 | × |𝑠 |) § 4.5

Captureless Lookbehinds unsupported O (|𝑟 | × |𝑠 |) § 4.4

Unrestricted Lookarounds unsupported O (|𝑟 | × |𝑠 |)† § 4.3

†
: with an additional O ( |𝑟 | × |𝑠 | ) space complexity

This table summarizes most of our results. Taken together, they show that a large subset of
JavaScript regexes can be matched in linear time, for both the string and the regex size.

2 LINEAR REGEX ENGINES BACKGROUND
To help position our contributions, this section presents a brief overview of commonly used regex-

matching algorithms. Traditional regexes can be represented as nondeterministic finite automata

(NFAs), with a mix of Y-transitions and transitions labeled with characters to read from the string.

A regex matches a string if there exists a path whose labeled transitions spell out the string in the

corresponding NFA. Figure 1 summarizes the traditional Thompson construction [Thompson 1968]

for traditional regexes (other constructions exist [Gluškov 1961]). For a traditional regex of size |𝑟 |
(meaning that its textual representation uses |𝑟 | characters), computing the Thompson NFA has

O (|𝑟 |) time complexity and produces an NFA with O (|𝑟 |) states and transitions. In the rest of this

paper, we refer to a regex and its Thompson NFA interchangeably, so that the states of a regex are
those of its NFA.

𝑒1 𝑒2

𝑒1

𝑒2

𝑒
a

Fig. 1. Recursive Thompson NFA constructions for 𝑎, 𝑒1𝑒2, 𝑒1 |𝑒2 and 𝑒∗.

This traditional construction can be extended to handle capture groups. First, nodes with multiple

outgoing edges are augmented with a notion of edge priority, indicating which path should be

considered first. Second, effectful nodes are added to track the string positions at which each

capture group is entered and exited. An example of such a tagged NFA [Laurikari 2000] is shown

in Figure 2 (there and in the rest of this work dotted arrows indicate high priority edges). A path

through the #1:entry node records at which string position it entered the first capture group.

2
Nonnullable plus https://chromium-review.googlesource.com/c/v8/v8/+/4778506, Nullable quantifiers https://chromium-

review.googlesource.com/c/v8/v8/+/4755530, Lookbehinds https://chromium-review.googlesource.com/c/v8/v8/+/5093860.

https://chromium-review.googlesource.com/c/v8/v8/+/4778506
https://chromium-review.googlesource.com/c/v8/v8/+/4755530
https://chromium-review.googlesource.com/c/v8/v8/+/4755530
https://chromium-review.googlesource.com/c/v8/v8/+/5093860
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#1:entry

#1:exit

a .

b

0: SetReg #1: entry

1: Fork 2 4

2: Consume 'a'

3: Jump 5

4: ConsumeAny

5: SetReg #1: exit

6: Consume 'b'

7: Accept

Fig. 2. Tagged NFA
and its corresponding
bytecode for /(a|.)b/.
The bytecode represen-
tation is explained later
in Section 3.3.

Backtracking engines match regular expressions by enumerating all

paths of the corresponding NFA in order of priority and returning the first

accepting path. This technique can naively be adapted to support all regex

features (backreferences, lookarounds. . . ), but it has worst-case exponential

time complexity in the size of the string, and the worst case can happen even

on regexes using only traditional regular expression features. In the absence

of backreferences (for which the matching problem is NP-hard for the size

of both the input string and the regex [Aho 1990; Dominus 2000]), and

by excluding lookarounds and some other features, linear engines achieve

linear-time complexity using the following insight:

Uniform-futures property: Consider two path prefixes of an automa-

ton 𝑝1 and 𝑝2. If they both reach the same regex state while having read the

same prefix of the input string, then any extension of 𝑝1 into a complete

path is also a valid extension of 𝑝2. In the presence of capture groups, if

𝑝1 has higher priority than 𝑝2, then any extension of 𝑝1 also has higher

priority than 𝑝2. In other words, the future of a path prefix only depends

on its current regex state and its current string position.

To illustrate this property, consider the regex /(a+)*b/ executed on the

string "aaa". Let 𝑝1 be the partial path matching the first two "a" with a

single iteration of the star, and 𝑝2 the partial path matching the first two

"a"with two iterations of the star. Despite their diverging pasts, these paths
have the same future: each can lead to a match if and only if the second path

can also find one, and hence they do not need to be explored separately.

A typical backtracking engine will not perform such path merging: it will instead enumerate all

possible decompositions of the input string into non-empty sub-strings. Only at the end of each

path will it notice that there is no "b" character to complete the match, leading to complexity

exponential in the number of "a". All linear engines use the uniform-futures property to merge

convergent paths. With backreferences, however, this uniform-futures property does not hold. The

future of a path may depend on its prefix, because matching a backreference depends on how

capture groups were previously matched. As a result, linear engines do not support backreferences.

Until this paper, linear engines also excluded lookarounds. We show in Section 4.3 that lookarounds

can in fact be matched linearly.

Bit-state backtracking (or memoized backtracking). The most straightforward linear-matching

algorithm, bit-state backtracking, simply augments backtracking with a memoization table that

records each pair of string position and regex state considered along the search. This table is

sufficient to leverage the uniform-futures property: if a path reaches a previously visited pair, it

is simply discarded. This approach preserves the usual benefits of backtracking engines (regexes

that require little backtracking have excellent performance), but it comes at a significant additional

memory cost O (|𝑟 | × |𝑠 |). Consequently, state-of-the-art engines use it only for small regex and

strings [Google 2023].

Thompson Simulation and PikeVM. More memory-efficient is NFA simulation (Thompson’s algo-

rithm [Thompson 1968]), which is used by most linear engines in the common case. It explores the

graph breadth-first, ensuring that paths that have consumed the same input prefix are considered

at the same time, and leveraging the uniform-futures property to convergent paths. NFA simulation

extends to tagged NFAs (Figure 2) to support capture groups [Cox 2009; Pike 1987], in which

case the graph and its exploration algorithm are typically translated into a unified byte code, and
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executed by a so-called Pike VM (Section 3.3). This paper describes extensions to the NFA simulation

and PikeVM algorithms.

LazyDFA. Finally, for regexeswithout capture groups, many engines perform lazy DFA simulation,
a variant of NFA simulation that performs better on average [Google 2023] while maintaining

worst-case linear complexity. Lazy DFA performs similarly to NFA simulation but keeps visited

states as sets instead of lists (order is irrelevant when no groups are present). The result can be

viewed as interleaving traditional determinization and matching: it materializes the states that

would have been visited by the traditional ahead-of-time DFA lazily, as it matches its input string

(ahead-of-time construction has O
(
2
|𝑟 | )

time complexity, whereas lazy DFA performs at most |𝑠 |
transitions, each of which have complexity |𝑟 | to compute neighbor states).

3 TECHNICAL BACKGROUND
We now move to our main focus: adapting NFA simulation to match JavaScript regular expressions.

This section first presents the JavaScript regex language and its semantics specificities, then

describes NFA simulation in detail, laying the groundwork for the presentation of our contributions

in Section 4.

3.1 JavaScript Regex Syntax

Regular Expressions:

e ::= c Character

| . Any Character

| 𝜖 Empty

| e1 e2 Concatenation

| e1|e2 Union

| e q Quantifier

| (e) Capture Group

| (?:e) Noncapturing Group

| (lk e) Lookaround

Quantifiers:

q ::= * Greedy Star

| *? Lazy Star

| + Greedy Plus

Lookarounds:

lk ::= ?= Positive Lookahead

| ?! Negative Lookahead

| ?<= Positive Lookbehind

| ?<! Negative Lookbehind

Fig. 3. Regex Syntax

This work considers the subset of JavaScript regexes depicted on

Figure 3. Greedy operators are also sometimes referred to as eager,
and lazy operators as nongreedy. All our algorithms also support

additional features with linear-time guarantees, like anchors (ˆ,$),
character classes ([a-z], \d,\w. . . ), or even arbitrary predicates

that only consult the surrounding characters. Counted repetitions

are also supported by repeating the sub-expression (just like

in state-of-the art linear engines). This makes the regex and

the matching time complexity grow with the counters used in

counted repetitions.

Notations. To make regexes more readable, we use the no-

tation L r M for noncapturing groups, instead of the usual (?:r)
JavaScript syntax. Such noncapturing groups are just annota-

tions to make parsing unambiguous, but don’t introduce any

capture groups to extract. Similarly, we use the character 𝜖 to

denote the empty regex, instead of not writing anything at all

(e.g. we write /a|𝜖/ instead of /a|/). We sometimes annotate

each regex capture group as follows: /a(b)(c)/ gets annotated

to /a(b)#1(c)#2/. In JavaScript, each capture group must have

a distinct identifier, even for named capture groups. Similarly,

we annotate each lookaround with an unique identifier. Identi-

fiers are integers given in a preorder AST traversal. This ensures that if lookaround l≶𝑖 contains
another lookaround l≶ 𝑗 , then 𝑖 < 𝑗 . For instance, the regex /(?=a(?<=a))a/ gets annotated to

/(?=≶1a(?<=≶2a))a/. We write ℓ (𝑟 ) the total number of lookarounds in a regex 𝑟 . For instance,

ℓ (/(?=a(?<=a))a/) = 2.

3.2 JavaScript Regex Semantics Peculiarities
While most modern regex languages share a number of nontraditional features, they also present a

number of differences [Davis et al. 2019]. These differences are scarcely documented, yet they can
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have a substantial impact on the semantics or time complexity of regex matching. In this section,

we focus on some subtle and notable properties of the JavaScript regex language, that may separate

it from other modern regex languages.

Priority The JavaScript backtracking semantics [ECMA-262 2024] explores paths in a given

priority order. In an alternation, the left branch has priority over the right one. In a greedy quantifier,

the priority is to iterate as much as possible, while a lazy quantifier tries to iterate as few times

as possible. JavaScript regexes are unanchored, meaning that matches can start anywhere in the

input string. The match that starts the earliest in the input string has the most priority. In practice,

engines add the prefix .*? to the regex they are executing to find that match.

Capturing Lookarounds[ECMA-262 2024, 22.2.2.4]. Lookarounds in JavaScript are more than

assertions. Lookahead and lookbehinds can define capture groups that the engine should return.

For instance, /(?=(c)#1)/ on "c" returns that capture group #1 is set to "c". However, as in most

modern regex languages with them, negative lookarounds cannot define any capture groups.

Unbounded Lookarounds[ECMA-262 2024, 22.2.1:Assertion] Some languages (e.g. Perl, Python,
Java) only allow fixed-width lookarounds. Meaning that regular expression patterns inside looka-

heads and lookbehinds should not contain unbounded quantifiers like star and plus. In JavaScript,

there is no such restriction and /(?=a*)/ is a valid regex. Fixed-width lookarounds are not much

harder to implement than anchors, but unbounded ones are more expressive and complex.

Capture Reset[ECMA-262 2024, 22.2.2.3.1, step 4.] When entering a quantifier, the value of

the capture groups defined inside that quantifier are reset to undefined. For instance, matching

/((a)#2|(b)#3)#1*/ on string "ab" will return a match where group #2 is set to undefined. On

the first star iteration, #2 is set to the range 0-1, matching the first character of the string. When

executing the second star iteration, #2 is reset to undefined, and group #3 is set to the range 1-2,
matching character "b". This property is specific to the JavaScript regex language. We show that,

while difficult to implement in linear time (see Section 4.2), this property helps implement other

features in linear time (see Sections 4.5.3 and 4.3).

Nullable Quantifiers[ECMA-262 2024, 22.2.2.3.1, step 2.b] Quantifiers can have both mandatory

and optional iterations. For instance, the plus has one mandatory iterations, followed by any number

of optional ones. The star has no mandatory iterations, but can have any number of of optional ones.

In JavaScript, optional repetitions of a quantifier cannot match the empty string. This prevents the

backtracking implementation from executing an infinite loop when matching a nullable star for

instance. This semantics for nullable quantifiers is specific to JavaScript. Other regex languages

typically have different semantics for nullable quantifiers that is discussed in Section 4.1.

Usual NFA Simulation instructions:
Consume c Consumes character c.
ConsumeAny Consumes any character.

Jump l Jumps to label l.
Fork l1 l2 Creates a new thread.

l1 has higher priority.
Accept A match is found.

SetReg reg Writes current string

position to register reg.

New instructions introduced in this work:
BeginLoop § 4.1

EndLoop § 4.1

SetQuant 𝑞 § 4.2

WriteOracle 𝑙 § 4.3

CheckOracle 𝑙 § 4.3

NegCheckOracle 𝑙 § 4.3

WriteLB 𝑏 § 4.4

CheckLB 𝑏 § 4.4

NegCheckLB 𝑏 § 4.4

SetNullPlus 𝑞 § 4.5

CheckNull 𝑞 § 4.5

Fig. 4. NFA Simulation Bytecode Instructions
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3.3 NFA Simulation Engines

Algorithm 1: Simulation

for i=0 to str.length do
while active≠[] do
t = active.top()
if processed[t.pc] then
active.pop()
continue

end
processed[t.pc] = true
match bytecode[t.pc] with
case Consume c⇒
if c = str[i] then
t.pc = t.pc+1
next.push(t)

end
active.pop()

case Jump l1⇒
t.pc = l1

case Fork l1 l2⇒
t.pc = l2
t’ = t.copy()
t’.pc = l1
active.push(t’)

case Accept⇒
bestmatch = t
active = []

case SetReg r⇒
t.regs[r] = i
t.pc = t.pc+1

end
end
active = next.reverse()
next = []
processed.fill(false)

end
return bestmatch

The NFA simulation algorithm is a well-established way to avoid the

exponential cost of determinization, used in V8Linear, RE2, Rust and

Go. It is common to represent the tagged NFA with a bytecode. This

bytecode corresponds to an array of bytecode instructions depicted

on Figure 4, each associated with a label.

A simulation engine (as shown on Algorithm 1) maintains a list of

threads ordered by priority, active (a LIFO list). Each thread contains

a program counter pc and a set of registers regs. Threads represent
incomplete paths of the NFA synchronized at the same string position

i. Initially, active contains a single thread with pc 0.
The algorithm goes through the string one character at a time (the for
loop). To compute the next list of threads for the next string position,
it follows transitions of the NFA, starting with the highest priority

thread, using active.top(). When a thread reaches a Consume in-

struction that corresponds to the next character, it is pushed into

next. New threads may be created with the Fork instruction. If a

thread reaches an Accept instruction, it is stored as being the best

possible match found so far. Lower priority threads are discarded, but

the algorithm keeps running with higher-priority threads in next.
The algorithm also maintains a processed array indicating which

bytecode instruction has already been executed at this step. Any

thread that reaches a bytecode instruction already in that array (when

processed[t.pc] is true) is discarded with active.pop() (using

the uniform-futures property of section 2). Thanks to this array, each

bytecode instruction can be executed at most once for each string

position.

Example. Consider the regex /(a|.)b/ (whose bytecode is shown in Figure 2), with string "ab".
Initially, active contains a single thread with pc 0. After a first iteration for the first character,

the active list contains a thread at pc 3, and another at pc 5. During the second iteration, the

second thread gets killed, as the first one executes the instruction at pc 5 first. After reading the
last character, a single thread reaches the Accept instruction. Using its register values, the capture

group #1 is known to contain the sub-string delimited by indices 0 and 1, indicating the first letter

"a". Note that on the string "ac", the simulation engine would only check once if the thread in state

6 can accept the second character, and immediately conclude that there is no match. A backtracking

implementation would check it twice: one for each path that consumed the first character.

Complexity. For a regex 𝑟 , the size of the generated bytecode and its number of epsilon transitions

grow linearly with the size of the regexO (|𝑟 |). Then, at each string position, the simulation executes

each bytecode instruction at most once, and follows each transition at most once. It follows that,

for a regex 𝑟 and a string 𝑠 , this executes in the worst case O (|𝑟 | × |𝑠 |) bytecode instructions. All
of these instructions, except Fork, are trivially implemented in O (1) time complexity. The case of

Fork and the space complexity are discussed later in Section 4.6.

4 MATCHING JAVASCRIPT REGEXES WITH LINEAR-TIME GUARANTEES
In this section, we present six different algorithms to match different features of the JavaScript regex

language with linear time guarantees. We first show in Section 4.1 that the Nullable Quantifier
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semantic property of JavaScript is incompatible with a traditional NFA simulation engine, but

present an extension that solves the issue while retaining linear complexity. We then present in

Section 4.2 an algorithm to implement the Capture Reset semantic property in linear time, while

this previously introduced regex-quadratic time complexity in other implementations. Next, we

introduce previously unsupported JavaScript features in a linear engine. Section 4.3 presents an

algorithm for unrestricted lookarounds, while Section 4.4 presents a streaming algorithm for lookbe-

hinds without capture groups. We then present algorithms for linear matching of any nonnullable or

greedy JavaScript plus (Section 4.5). Finally, we exhibit a novel space and time complexity tradeoff

when implementing capture group registers with NFA simulation (Section 4.6). Our algorithms

are composable (Section 4.7). Taken together, we show that a vast majority of JavaScript regexes

without backreferences can be matched in O (|𝑟 | × |𝑠 |) worst-case time complexity.

4.1 Matching JavaScript NullableQuantifiers in a Linear Engine

𝑠0

𝑠1

𝑠6

𝑠2

𝑠3

𝑠4

𝑠5

a

b

Fig. 5. Usual NFA for
/L L a|𝜖 ML 𝜖|b M M*/

Among all regex languages, JavaScript has a unique semantics when it

comes to matching nullable quantifiers (* or + for instance). Surprisingly,
the techniques and the uniform-futures property presented in section 2

do not obey these semantics. As a result, the V8Linear engine (using NFA

simulation) was incorrect and would sometimes return a different result

than specified. However, we present away to adapt these algorithmswithout

changing their asymptotic complexity.

The NFA simulation algorithm cannot visit the same regex state twice

without consuming any character in the string (see the processed array
of Algorithm 1). In JavaScript however, it is possible to visit the same

regex state twice without consuming, as long as this state does not mark

the beginning of a quantifier. Consider for instance matching the regex

/L L a|𝜖 ML 𝜖|b M M*/ on the string "ab" (its NFA is represented on Figure 5).

The top priority result of an usual NFA simulation is to match only "a" in

a single star iteration. Doing a second iteration of the star is invalid, since

it would visit the same regex state (𝑠3) without having consumed anything

from the string yet.

𝑠0

BeginLoop

𝑠1

𝑠6

𝑠2

𝑠3

𝑠4

EndLoop

𝑡0

BeginLoop

𝑡1

𝑡6

𝑡2

𝑡3

𝑡4

EndLoop

a

b

a

b

Fig. 6. Fixed NFA for L L a|𝜖 ML 𝜖|b M M*

In JavaScript, the correct result is to match the entire string

"ab" in two iterations of the star. The first iteration matches

"a" in the first alternation and the empty string in the second

alternation. The second iteration matches 𝜖 then "b". Both of

these iterations of the star have matched a nonempty part of

the string. In JavaScript, the future of a path prefix depends

not only on the current string position and the current regex

state, but also on what has been consumed in the current

quantifier. Going from 𝑠3 to 𝑠3 without consuming characters

in Figure 5 is only possible when the current execution has

consumed "a" in 𝑠2 before reaching 𝑠3.

To adapt the NFA simulation algorithm to JavaScript se-

mantics, we observe that, given a regex state and a string

position, there are at most two possible behaviors depending

on whether the current path is allowed to exit a quantifier

without consuming a character. To materialize these two be-

haviors, we duplicate the states of the regex, as shown on

Figure 6. The sub-automaton on the left of the Figure contains states 𝑠𝑖 that are allowed to exit
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any quantifier without consuming a character, because they already consumed a character in all

of their parent quantifiers. States 𝑡𝑖 of the right sub-automaton however are states that should

not be allowed to exit their current innermost quantifier without consuming. A thread that just

began a quantifier iteration should not be able to exit this iteration just yet. Consequently, at the

beginning of each quantifier, we insert a new BeginLoop bytecode instruction, which switches the

execution to the automaton on the right. When consuming a character, transitions always point

back to the automaton on the left. Even if a thread was inside several nested quantifiers, all of them

just consumed a character and are then allowed to conclude their current iteration. At the end of

each quantifier, we insert a new EndLoop instruction. In the left automaton, this behaves like a

Jump, but on the right automaton this is a blocking state.

case Consume c⇒
if c=str[i] then
t.pc = t.pc+1
t.left = true
next.push(t)

end
active.pop()

case BeginLoop⇒
t.left = false
t.pc = t.pc+1

case EndLoop⇒
if t.left then
t.pc = t.pc+1

else
active.pop()

end

Fig. 7. Executing
BeginLoop/EndLoop

Correctness. Regex quantifiers are well-parenthesized, meaning that it’s never

possible for a thread to be allowed to exit its innermost quantifier but not an

outermost one. As a result, no matter the number of nested quantifiers, two

copies of the original automaton are enough to capture all the behaviors of the

JavaScript quantifier semantics.

We reported this semantic mismatch, then implemented andmerged our solu-

tion in V8Linear. In practice in an NFA simulation implementation, one does not

need to actually duplicate the bytecode. Instead, threads are augmented with

a boolean indicating in which automaton they currently belong. BeginLoop,
EndLoop and Consume instructions each modify or read this boolean. An ex-

tension of Algorithm 1 is shown on Figure 7, where this boolean is called left.
When the regex inside a quantifier is not nullable (cannot match the empty

string), there is no need to insert BeginLoop and EndLoop instructions. A sim-

ple analysis to determine if a regex is non nullable is shown later in Section 4.5.

We illustrated our solution on NFA simulation, but the same insight can be

used for a bit-state backtracker or a Lazy DFA matcher. This also generalizes

to counted repetition, where V8Linear used to return incorrect results. For

instance, in /L L a|𝜖 ML 𝜖|b M M{0,7}/, the optional repetitions are not allowed to match the empty

string. It suffices to wrap the bytecode of each optional repetition with BeginLoop and EndLoop
instructions.

4.2 Linear Matching of the Capture Reset Property
The Capture Reset property introduced in section 3.2 is unique to the JavaScript regex language. In

this section we show how the solution used in V8Linear has quadratic complexity in the size of the

regex, and we present a new linear algorithm for the Capture Reset property.

The previous quadratic algorithm. The intuitive solution used in V8Linear defines a new bytecode

instruction, ClearReg reg, which clears the value of a capture register, setting the corresponding

group to undefined. Such instructions are inserted at the beginning of each quantifier, for each

capture group defined inside that quantifier. For instance, Figure 8 shows the bytecode instructions

generated for /L L (a)|b M*|c M*/. Here we omit the BeginLoop and EndLoop instructions of sec-
tion 4.1 to explain both properties independently. When a capture group is defined inside several

quantifiers, one needs to clear its capture registers at the beginning of each of these quantifiers.

For instance, when matching /L L (a)|b M*|c M*/ on "ac", the first ClearReg instruction is needed

to clear the capture group as we enter the outer star a second time. When matching the same regex

on "ab", the second ClearReg instruction is needed to clear the value of the group as we enter the

inner star a second time. As a result, each capture group might need as many bytecode instructions

as the number of quantifiers above in the regex AST. Consider the following family of regexes:
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𝑟0 = /./ and 𝑟𝑛+1 = /(𝑟𝑛)*/. While its size |𝑟𝑛 | grows linearly in O (𝑛), its bytecode size grows
quadratically in 𝑛 (with O

(
𝑛2
)
complexity).

ClearReg#1

SetReg
#1:entry

SetReg
#1:exit

ClearReg#1

a

b

c

Fig. 8. /L L (a)|b M*|c M*/ NFA
with ClearReg instructions.

Our linear algorithm. We now present our solution to implement

the Capture Reset property linearly in the size of the regex with an

NFA simulation. In essence, it consists in not clearing the capture

group values during the execution of the bytecode for all threads,

but instead after a match is found, only for the winning thread.

Consider the regex /L L (a)|b M*|c M*/ again. If a match is found

with some value for the capture group, there are only two reasons

for which we would like to clear its value: either the inner star

or the outer star were entered again after the capture group was

set. If we know when was the last time each quantifier and each

group were entered we can filter accordingly, keeping the capture

value only if it was defined later than the times both quantifiers

were entered. To define this notion of time, we extend the NFA

simulation engine with a global clock, an integer value starting at

0 and increasing each time the simulation executes any bytecode

instruction. We show on Figure 10 how to extend Algorithm 1, where

clk is that clock. We also extend the threads memory with some new

registers containing clock values. One new register for each group

(in gclocks), and one for each quantifier (in qclocks). Whenever

the NFA simulation executes a SetReg instruction corresponding

to the entry of a capture group, it records both the current string

position and the current clock value. We also add a new SetQuant 𝑞 instruction, inserted at the

beginning of each quantifier body, that records the clock value for quantifier 𝑞. As a result, the

size of the bytecode corresponding to a quantifier is now constant and does not depend on how

many capture groups are defined inside. This requires more registers for each thread, but as both

the number of groups and the number of quantifiers are bounded by |𝑟 |, this memory still grows

linearly with the size of the regex.

*:20

*:5 *:35

(a):6 (b):29 (c):37

Fig. 9. Simplified AST for
/L (a)*|L (b)|(c) M* M*/
with clock values of the
winning thread for "abc".

Filtering the capture groups after a match is found can be done

with time complexity O (|𝑟 |), with an AST traversal of 𝑟 . For instance,

consider the regex /L (a)*|L (b)|(c) M* M*/ and the string "abc".
Figure 9 represents a simplified AST of the regex, where we wrote the

final clock values of each group and quantifier in the winning thread.

We start with the root of the AST, and compare its value with both its

children. Because the inner left star has a smaller clock value than the

outer star, all capture groups inside are cleared. We then recursively

consider the inner right star and compare its last clock value to its

children. One of the groups, (b), has a smaller clock value, meaning

that it was not defined in the last iteration of its parent star and is

cleared. Finally, we keep the value of the last group (c).

Correctness. Our new NFA construction does not change the paths

explored by the threads, it only replaces some ClearReg instructions with a single SetQuant in-
structions. The correctness of the new filtering algorithm relies on the following informal invariant:

at any moment during the NFA simulation, for any thread 𝑡 , any group 𝑔 inside a quantifier 𝑞, the

clock value of 𝑔 in 𝑡 is strictly greater than the clock value of 𝑞 if and only if the capture value of 𝑔
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was defined in the last iteration of 𝑞 in 𝑡 . This invariant holds even when 𝑔 is inside several nested

quantifiers.

case SetReg r⇒
t.regs[r] = i
t.gclocks[r] = clk
t.pc = t.pc+1

case SetQuant⇒
t.qclocks[r] = clk
t.pc = t.pc+1

Fig. 10. Updating
clocks

The SetQuant instructions can be omitted for quantifiers with no capture

group inside, ensuring that our new bytecode generation is always smaller

than the previous solution with ClearReg instructions. While we present

this solution on an NFA simulation engine, the same idea could be applied

to a backtracking or a bit-state backtracking implementation, as both may

also spend a quadratic amount of time clearing capture registers if they fol-

low the implementation described in the JavaScript semantics. Note however

that in a backtracking implementation supporting backreferences, groups

that may be backreferenced need to be cleared dynamically, so that the back-

reference matches the correct value (in JavaScript, a backreference to an

undefined group matches the empty string).

4.3 Unrestricted JavaScript Lookarounds in Linear Time
Wenow present an algorithm tomatch all JavaScript lookarounds (both lookaheads and lookbehinds,

both positive and negative) in linear time. JavaScript lookarounds have two roles: filtering matches

and defining capture groups. Our algorithm handles these roles separately in different phases. First,

lookarounds act as assertions filtering matches. For this aspect, we show that we can precompute

an oracle boolean truth table, indicating each string position at which each lookaround holds. We

show that constructing this oracle can be done in O (|𝑟 | × |𝑠 |) complexity. We then match the main

expression, simply consulting the oracle when a path reaches a lookaround. Finally, we reconstruct

missing capture groups defined inside lookarounds in a third phase. Thanks to the Capture Reset

property of JavaScript, we show that we can also do that in O (|𝑟 | × |𝑠 |) complexity. An example

of executing all phases of our algorithm is provided in the supplemental material. This algorithm

comes with an additional space complexity of O (ℓ (𝑟 ) × |𝑠 |) for the oracle where ℓ (𝑟 ) ≤ |𝑟 | is the
number of lookarounds in 𝑟 . We will show in Section 4.4 how to avoid this space complexity in the

particular case of captureless lookbehinds.

4.3.1 First Phase: Building the Oracle. We define the intrinsic size of a regex 𝑟 , noted | |𝑟 | |, the size of
its textual represenation without descending recursively inside lookarounds. We get the following

intrinsic equality, expressing that the full size of a regex is equal to the sum of its intrinsic size

and the intrinsic sizes of all its lookarounds:∀𝑟, |𝑟 | = | |𝑟 | | +∑ℓ (𝑟 )
𝑖=1

| |𝑟≶𝑖 | |.
To build each row of the oracle, we present a modification of the NFA simulation algorithm that

allows to find in O (||𝑟≶𝑖 | | × |𝑠 |) all the places in 𝑠 where 𝑟≶𝑖 matches. In essence, we match r≶𝑖 in
reverse and modify the Accept instruction.

Observation 1: Replacing the final Accept instruction of an NFA by an instruction that writes

the current string position and does not discard lower priority threads allows the NFA simulation

algorithm to find all positions at which a match can end. We consequently define the instruction

WriteOracle i which writes to the oracle.

Observation 2: Define the reverse of r≶𝑖 , rev(r≶𝑖 ) by recursively inverting the two subexpres-

sions of each concatenation in r≶𝑖 . Matching /.*?rev(r≶𝑖 )/ on the reverse of a string 𝑠 can find

all positions where a match of r≶𝑖 in 𝑠 could begin. Consequently, we extend the NFA simulation

algorithm by allowing it to read the input string backward, starting with the last character of the

string, then moving toward its beginning. We use the standard forward direction for lookbehinds,

and the backward direction for lookaheads that we also reverse.

Using these observations, we can compute each string positions at which each lookaround hold

(i.e. the positions at which a match can begin). We construct the oracle one row at a time, starting
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with lookarounds with the highest indices (the deepest in the AST). For nested lookarounds, the

row of the inner lookarounds gets computed before its parent. The parent can then replace its inner

lookaround r≶𝑖 by a single CheckOracle i instruction, which checks the oracle table at the current

string position. Doing so, we build the entire row 𝑖 of the oracle table with a single match of r≶𝑖 on

the string.
3
The complexity of building the entire table is then O

(∑ℓ (𝑟 )
𝑖=1

| |𝑟≶𝑖 | | × |𝑠 |
)
, bounded by

O (|𝑟 | × |𝑠 |) using the intrinsic equality.

4.3.2 Second Phase: Matching the main expression. Once we know the positions at which each

lookaround holds, we can simply run the main expression in a forward direction. Whenever a

thread encounters a lookaround, it simply accesses the oracle with a CheckOracle instruction.

When the NFA simulation executes this instruction, it also records in each thread the string position

at which each lookaround was last used. This means defining new thread registers, one for each of

O (|𝑟 |) many lookarounds, just as the ones used for capture groups (no change to the asymptotic

complexity). This phase has time complexity O (||𝑟 | | × |𝑠 |). When a match is found, this phase

returns both the register values for all capture groups defined inside the main expression, and the

last string position each lookaround was used. We reconstruct the values of capture groups defined

inside positive lookarounds in the third phase.

4.3.3 Third Phase: Reconstructing Missing Capture Groups. Finally, we run an NFA simulation for

each outermost lookaround that was used to produce the main match. This time, this simulation

is run forward for lookaheads and backward for lookbehinds (that we reverse), to comply with

the capture semantics inside lookarounds. We start the simulation exactly at the input string

position where the lookaround was used. If lookarounds are inside quantifiers, they may have

been used several times in a match. However, the Capture Reset property ensures that only its last

visit can define the capture groups inside. As we run the simulation for an outer lookaround, it

may require going through an inner lookaround. In that case, we check the oracle with a single

CheckOracle instruction, mark the inner lookaround and execute it later. Winning threads of these

new simulations define the missing capture group values. In the worst-case, each lookaround needs

to be executed once in this phase, which has time complexity O
(∑ℓ (𝑟 )

𝑖=1
| |𝑟≶𝑖 | | × |𝑠 |

)
, or O (|𝑟 | × |𝑠 |)

using the intrinsic equality.

case WriteOracle l⇒
oracle[l][i] = true
active.pop()

case CheckOracle l⇒
if oracle[l][i] then
t.pc = t.pc + 1

else
active.pop()

end

Fig. 11. Oracle

Figure 11 shows how to augment Algorithm 1 to support the new in-

structions WriteOracle and CheckOracle. Note that, unlike an Accept,
WriteOracle does not kill lower priority treads but only the current one

(and writes to the oracle), in accordance with Observation 1.

Correctness. Observation 1 follows from the uniform-futures property, and

Observation 2 can be proved by induction on the regex. The correctness of the

first two phases directly follows from Observations 1 and 2 and the correctness

of the standard NFA simulation algorithm. The third phase follows from the

Capture Reset property: capture groups inside lookarounds can only be defined

by the last iteration of this lookaround in the winning thread.

4.4 Matching Captureless Lookbehinds with an NFA Simulation
The previous algorithm of Section 4.3 requires precomputing the entire oracle table. For lookbehinds

without capture groups inside, this is not needed. In this section, we present a novel separate

streaming algorithm to extend the NFA simulation algorithm to handle captureless lookbehinds.In

3
As an optimization, note that capture groups do not matter in that step, and we can freely remove them from each

lookaround subexpression. We can even use a Lazy DFA matcher instead of the NFA simulation for faster matching.
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particular, all negative lookbehinds are supported, as they cannot define capture groups (see

Section 3.2). Compared to the previous section, this algorithm needs no additional space complexity.

It does not use the Capture Reset property and is thus applicable to any regex language, not just

JavaScript. This algorithm supports nested lookbehinds and capture groups outside of lookbehinds.

case WriteLB b⇒
LBtable[b] = true
active.pop()

case CheckLB b⇒
if LBtable[b] then
t.pc = t.pc + 1

else
active.pop()

end

Fig. 12. LBtable
instructions

Unlike lookaheads, deciding whether a lookbehind is satisfied only depends

on the part of the string that has already been read. This suggests that we can

merge together the first two steps of the algorithm in Section 4.3, building

the oracle as we match the main expression. As we synchronize both steps,

it turns out that only the oracle column corresponding to the current string

position is used. This new algorithm leverages this observation. It maintains

an array of booleans, LBtable of length ℓ (r). This LBtable corresponds to the

column of the oracle of Section 4.3 of the current string position. We show

below how an NFA simulation engine can update this array in such a way that,

at string position 𝑖 , for a lookbehind 𝑏, LBtable[𝑏] contains 1 if and only if the

lookbehind 𝑟≶𝑏 holds at position 𝑖 . When a thread encounters a lookbehind, one

then simply needs to check the corresponding entry in LBtable. We implement

this with a new bytecode instruction, CheckLB b, killing the current thread if LBtable[b] is 0.

For negative lookbehinds, we use a similar NegCheckLB b instruction. Figure 12 shows how to

augment Algorithm 1 for these new instructions. At each new character, the LBtable is also reset

to an array of false. Compared to Figure 11, the two instructions do not use the current string

position i, since the LBtable corresponds only to the current column of the oracle.

𝑒 WriteLB b
.

Fig. 13. NFA of (?<=≶𝑏e)

To update this LBtable, it suffices to compile each lookbehind

separately and run them in lockstep with the main regex. Each of

these lookbehind automata ends with a new WriteLB b bytecode

instruction, writing to LBtable that the lookbehind𝑏 is satisfied at the
current string position. Each lookbehind automaton also starts with

a .*? prefix, allowing the match to begin at any character. Figure 13

shows the NFAs generated for captureless lookbehinds; since thread

priority is irrelevant in these automata, we do not use dashed arrows. Each time the simulation

reads a new character, the contents of LBtable are reset to 0.
4

CheckLB 1 CheckLB 2

WriteLB 1

WriteLB 2

a

b

c

.

a

b

c

.

b

Fig. 14. Lookbehind automata for
/abc(?<=ab(?<=b)c)/

To run these multiple automata in lockstep, it suffices

to add their initial state to the list of initial states of the

NFA simulation.
5
This list of initial states is ordered such

that the initial state of a lookbehind comes before the initial

state of a parent lookbehind in the regex AST, to ensure that

each WriteLB instruction is executed before the correspond-

ing CheckLB instruction. As an example, consider the regex

/abc(?<=ab(?<=b)c)/. Its NFA is shown on Figure 14. On

the string "abc", the NFA simulation will start executing

all three automata, starting with the one on the right. After

reading "a", none of the automata have yet reached a final

state, and LBtable contains only 0s. This is expected, since

none of the lookbehinds hold after reading a single "a". After
reading "b" however, the automaton on the right reaches the

4
One can even avoid resetting by storing the last position where each lookbehind was satisfied instead of booleans.

5
Alternatively, since the lookbehinds considered in this algorithm do not contain groups, one could also run these lookbehind

automata with a Lazy DFA matcher in lockstep with an NFA simulation.
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WriteLB 2 instruction, and writes to LBtable. Just after this write, the middle automaton reaches

the CheckLB 2 instruction, and since LBtable[2] was just written to, this thread is kept alive.

Similarly after reading "c", the middle automaton will write to the table and the main automaton

on the left will finally reach an accepting state, indicating that a match was found.

LBtable has size ℓ (𝑟 ), bounded by O (|𝑟 |). Since each lookbehind is compiled exactly once, the

total generated bytecode has size O (|𝑟 |). Each WriteLB and CheckLB instruction can be executed

with O (1) complexity, and resetting LBtable at each new character has a total time complexity of

O (|𝑟 | × |𝑠 |), leaving the total complexity of the NFA simulation unchanged.

Correctness. This algorithm follows from Observation 1 and the following property: for any

lookbehind /(?<=r)/, any string 𝑠 and index 𝑖 , there exists a match of /.*?r/ on 𝑠 ending at

position 𝑖 if and only if /(?<=r)/ holds in string 𝑠 at position 𝑖 .

4.5 Linear Matching of the JavaScript Plus

𝑒

𝑒

Fig. 15. Usual NFA for e+
and e+? in linear engines.

The traditional construction for a regex plus (as shown in Figure 15 and

used in RE2 or Rust) generates linear-sized NFAs. Unfortunately, this

construction does not implement the JavaScript plus semantics. To see

where this construction fails, consider the regex /L 𝜖|. M+/ on string "a".
In JavaScript, an engine returns a match on the whole string, doing a first

iteration matching nothing then another matching "a". With the usual

construction of Figure 15 however, an NFA simulation’s highest priority

match does a single iteration matching only the empty string. Doing

another iteration is invalid, since it would go back to the beginning of

the plus without having consumed any character. While this is reminiscent of the problem solved in

Section 4.1, wrapping the body in BeginLoop and EndLoop instructions would not be correct, as it

would prevent a plus from evermatching the empty string. As seen in Section 3.2, the first mandatory

repetition of the plus can match the empty string, but not the following ones. To reflect this

difference, the solution implemented by V8Linear was simply to expand /e+/ into /ee*/ and /e+?/
into /ee*?/. However, this leads to regex-exponential complexity: for instance, /L L a+ M+ M+/ gets

expanded into /L L aa* M+ M+/, then /L L aa* ML aa* M* M+/ and /L L aa* ML aa* M* ML L aa* ML aa* M* M*/.
To prevent exponential explosion, V8Linear used to simply reject regexes with too many nested

plusses. In this section, we present two new constructions to implement any nonnullable or greedy

plus without such bytecode duplication and in linear time.

null(.) = null(𝑐) = NN
null(𝜖) = CIN

null(𝑒1 𝑒2) = max(null(𝑒1), null(𝑒2))
null(𝑒1 |𝑒2) = min(null(𝑒1), null(𝑒2))

null(𝑒*) = null(𝑒*?) = CIN
null(𝑒+) = null(𝑒+?) = null(𝑒)

null((𝑒)) = null(𝑒)
null(lk 𝑒) = CDN

Using the order NN > CDN > CIN.

Fig. 16. Nullability analysis

4.5.1 Nullability. We now define three notions of nullability.

A regex can be nonnullable (or NN), meaning that it cannot

ever match the empty string (e.g. /a/). Otherwise, we define
Context-Independent Nullable (CIN) and Context-Dependent Nul-
lable (CDN) regexes. A CIN can always match the empty string

(e.g. /a|𝜖/). A CDNhowever canmatch the empty string depend-

ing on the surrounding context (when there are lookarounds

or if the engine supports anchors like \b or ˆ). For instance,
/a|(?=b)/ is only nullable when the next character is a "b".
Figure 16 presents a syntax-directed nullability analysis. This is

an approximation, in the sense that a nonnullable or a CIN can be

classified as CDN. As the analysis does not explore lookarounds

it does not detect for instance, that /a|(?=b)(?!b)/ is nonnul-

lable or that /(?=a)|(?!a)/ is a CIN. This isn’t an issue: the solution we present for CDNs is also

correct for CINs and nonnullables, albeit more complex.
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4.5.2 NonNullable Plus. The simplest case happens when compiling /e+/ or /e+?/ where e is

nonnullable. In that case, it turns out that the usual NFA construction shown in Figure 15 correctly

implements the JavaScript semantics. Since e cannot match the empty string, it does not matter

that the first repetition is allowed to match it while the others are not. We have implemented and

merged this case in V8Linear. For counted repetitions /e{n,}/, when 𝑛 > 0 and e is nonnullable
we can similarly avoid one repetition of the bytecode of e by replicating it 𝑛 − 1 times, followed by

Figure 15, instead of the usual 𝑛 repetitions followed by e*.

4.5.3 CIN and CDN Plus. Wenow present a way tomatch nullable greedy plusses linearly. Matching

nullable lazy plusses in linear time remains an open problem, although we only found them in

0.003% of regexes (see Section 5.1). Our solution leverages the following observation: the only way

to match the empty string with a greedy nullable JavaScript plus is to do a single iteration, and this

has the lowest priority. For instance, consider the regex /L a|𝜖|b M+/, a CIN. First, the middle branch

of the plus body is only allowed in the first iteration of the plus. So we can expand and rewrite this

regex as /L a|𝜖|b ML a|b M*/, removing the empty path from the star. This regex can only match

the empty string if it skips the star, but doing so has the lowest priority since the star is greedy.

Even if the string starts with a "b", then matching empty in the first iteration then consuming "b"
in the greedy star has higher priority than just consuming empty in the first iteration and skipping

the star. We can then further rewrite the regex to /L a|b ML a|b M*|𝜖/, or even /L a|b M+|𝜖/, where
the plus is now nonnullable.

SetQuant

BeginLoop

𝑒

EndLoop

SetNullPlus

CheckNull

Fig. 17. NFA for a CDN e+

As a result, we compile CINs and CDNs as a Fork, where the left branch
contains the nonnullable paths, and the right one corresponds tomatching

the empty string. However, the rewriting transformation in the example

above cannot be generalized. First, extracting the nullable path from a

regex cannot always be done this easily (consider /L L a|𝜖 ML b|𝜖 M M+/).
Second, for CDNs, the nullable path should only be taken when the

current string position allows it. Finally, the nullable path of a regex may

define capture groups. These groups can either be empty groups (e.g. in
/L a|(𝜖)|b M+/), or nonempty groups if the regex has lookarounds (e.g.
the CIN /L a|(?=(c))|𝜖|b M+/).
The first issue can be dealt with by adding BeginLoop and EndLoop

instructions (see Section 4.1) around the body of the plus, effectively

removing the nullable paths. The second issue for CDNs can be solved by

adding a new CheckNull instruction on the nullable path checking that

the nulled plus is in fact nullable at that point. We leave implementation

details out of this explanation, but computing the nullability of all plusses (even nested) in a

regex 𝑟 for a particular string position can be done with time complexity O (|𝑟 |), for a total added
complexity of O (|𝑟 | × |𝑠 |).6

Finally, when taking the nulled path of /e+/, one needs to set the capture groups defined along

the top-priority nullable path in e at that string position. This problem is similar to reconstructing

capture groups inside lookarounds in Section 4.3. From the Capture Reset property, we know that

these capture groups are only defined if the last time the plus was matched, the winning thread

went through its nullable path. Like for lookarounds, we record the last string position at which

each plus was nulled with a new bytecode instruction SetNullPlus inserted along the nullable

path. The resulting linear-sized NFA for /e+/ can be seen on Figure 17. Like a SetQuant instruction,
this instruction records in the current thread memory the current clock (see Section 4.2), but it also

records that the last time this plus was matched, it was nulled and at which string position. After a

6
For instance, by memoizing checks for the nullability of nested CDN plusses.
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winning thread is found, one can reconstruct the missing groups a posteriori. To do so, one starts

the simulation again on the body of each nulled plus, at the string position where they were last

nulled, without consuming any character of the string. One only needs to run this other simulation

once per CIN or CDN of the main expression r just like for the lookarounds of the third stage of

Section 4.3 but only the empty string. This last phase has a total time complexity of O (|r|),

case SetQuant⇒
t.qclocks[r] = clk
t.plusnulled[q] = -1
t.pc = t.pc+1

case SetNullPlus q⇒
t.qclocks[q]=clk
t.plusnulled[q] = i
t.pc = t.pc + 1

case CheckNull q⇒
if nullable(q,i) then
t.pc = t.pc + 1

else
active.pop()

end

Fig. 18. Nullable plus
instructions

Figure 18 shows how to extend Algorithm 1 for these new instructions.

Threads contain an additional set of registers, plusnulled, indicating for
each quantifier q if its last iteration consisted in taking the nullable path

of a nullable plus (in which case it contains the string position when it last

happened), or not (in which case it contains -1). These registers are used at
the end of the match to figure out which CDN plus needs its capture groups

to be reconstructed. We modify the SetQuant instruction of Figure 10

so that this register is reset to -1 when the quantifier is taken without

going through the nullable path. The nullable(q,i) function checks the

nullability of the q quantifier at the current string position i. When q
contains lookarounds, this reads from the oracle of Section 4.3.

This algorithm also supports nested CIN or CDN plusses with capture

groups inside. Consider for instance the regex /((𝜖)+2)+1/ being matched

on the string "a". After doing the NFA simulation, a match is found where

the winning thread took the nullable path of the outer plus, +1. In this

thread, plusnulled[1] is 0, so we reconstruct the capture groups inside +1 at string position 0.
To do so, we interpret ((𝜖)+2)

7
. Once again, a match is found where the outer capture group has

been defined, and now in the winning thread plusnulled[2] is 0. Consequently, we then interpret

(𝜖) from string position 0, defining the inner capture group.

Correctness. The new NFA construction relies on the fact that matching the empty string with a

greedy plus has the lowest priority: if at the current position, the regex inside the plus can match

any other string 𝑠 with lower priority, then matching empty in the first iteration then matching 𝑠

in a second iteration has more priority than doing a single empty iteration since the plus is greedy.

The capture group reconstruction algorithm uses the Capture Reset property: any capture group in

a plus can only be defined by the last iteration of that plus in the winning thread. The SetNullPlus
instruction ensures that missing groups are reconstructed.

4.6 A Space-Time Complexity Tradeoff for Capture Groups in an NFA Simulation

Time Space

Array O
(
|𝑟 |2 × |𝑠 |

)
O

(
|𝑟 |2

)
Linked List O (|𝑟 | × |𝑠 |) O (|𝑟 | × |𝑠 |)

Balanced Tree O (|𝑟 | × log |𝑟 | × |𝑠 |) O
(
|𝑟 |2

)
Fig. 19. NFA simulation complexity using dif-
ferent thread register data-structures.

Recall the execution of the Fork instruction in Al-

gorithm 1. As threads contain string indices for each

capture group (and the clock values of Section 4.2), this

instruction requires copying O (|𝑟 |) data in the worst

case. All the NFA simulation implementations we

found (including Rust, RE2 and V8Linear) use an array

for thread registers and copy the array when execut-

ing a Fork. As a result, the entire simulation execution

can have worst-case time complexity O
(
|𝑟 |2 × |𝑠 |

)
. In

most practical cases where the string is significantly bigger than the regex, this is not an issue.

However, in the case of user-provided regexes, this quadraticity can become a security concern.

We present two alternative data-structures for thread registers.

7
For this step, as we reconstruct groups that were taken along a nullable path, we can omit the non-nullable path on the left

of Figure 17 for nested CIN/CDN plusses. This ensures linearity: each plus is compiled at most once during this phase.



18 Aurèle Barrière and Clément Pit-Claudel

If one needs strict regex-size linearity, one can store each update done to a thread’s registers in

an immutable linked list. Storing a new value (SetReg) then consists in adding a new cell to the list.

Threads can be forked in O (1) time by simply sharing the tail of the list across multiple threads.

Threads registers are often written to during execution, but only read from at the very end of the

match. Extracting the final value of each register for the winning thread can be done by traversing

its list of updates. This comes with an additional space complexity for bigger strings: we know that

there can be as many as O (|𝑟 | × |𝑠 |) executions of SetReg instructions in a match and as a result

as many allocations.
8

If an O (|𝑟 | × log |𝑟 | × |𝑠 |) time complexity is acceptable, one can instead store thread registers in

an immutable balanced tree. Forking is then achieved in O (1) time. However, executing SetReg
instructions now requires O (log( |𝑟 |)) time. The worst-case space complexity of O

(
|𝑟 |2

)
is achieved

when O (|𝑟 |) threads are alive without sharing any sub-trees.
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Fig. 20. 𝑟𝑛 matching time

We experimentally validated that RE2 and Rust exhibit such regex-

quadratic complexity, although Rust limits the maximum number of cap-

ture groups in a regex. We implemented these three solutions in our pro-

totype OCaml engine and experimentally validated their time complexi-

ties. For instance, we define the following regex family: 𝑟0 =/L (a)? M*/,
𝑟1 =/L (a)?(a)? M*/, 𝑟2 =/L (a)?(a)?(a)? M*/ and so on. Figure 20

shows the execution time, measured in CPU clock cycles, of matching 𝑟𝑛
on the string "a1000". The experimental setup is described in Section 5.3.

We believe that regex engines would benefit from simple heuristics,

for instance switching to a linked list implementation if the number of

capture groups is bigger than the size of the input string.

4.7 Composing Our NFA Simulation Extensions
All the JavaScript regex features showcased on Figure 3 can be supported together with linear time

and space guarantees. The algorithms we presented in Sections 4.1, 4.2, 4.3, 4.5 are designed to be

composed together. The NFA simulation algorithm 1 can be extended with Figures 7, 10, 11 and 18.

Three of these algorithms perform matching in several passes: both the algorithms of Sections 4.3

and 4.5 reconstruct capture groups a posteriori, and the algorithm of Section 4.2 filters capture

groups after a match is found. These different phases can be organized as follows. In the first phase

of Section 4.3, when building the oracle, there is no need to reconstruct the groups inside plusses

since the oracle does not remember any capture group information. Next, in the second phase, we

first match the main expression, then reconstruct the groups inside nulled CDN plusses as in the

second phase of Section 4.5. Finally in the third phase of Section 4.3, we can match each lookaround

subexpression, then reconstruct the capture groups inside each nulled CDN plus. The clock filtering

can be done at the very end, once a final match with all captures is found.

Each of the three register implementations of Section 4.6 are compatible with all the algorithms

presented in this paper. While the streaming algorithm of Section 4.4 can be composed with the

algorithms of Section 4.1 and 4.2, it cannot be composed with the algorithm of Section 4.5 for CDNs

if the CDNs contain capture groups. In our CDN algorithm, we need to evaluate the nullability

of each CDN plus, and this may depend on knowing if a lookaround holds at a previous string

position, for which the full oracle is needed.

8
This can be seen as a specialization of the persistent array implementation of [Conchon and Filliâtre 2007], where the Diff
list is the list of register updates and a single rerooting is performed at the end for the winning thread.
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5 EVALUATION
5.1 Regex Usage Statistics

Nullable Quantifiers 5729 0.37%

Capture in Quantifiers 102283 6.67%

Nonnullable Plus (+ or +?) 405179 26.38%

CIN and CDN greedy + 1041 0.07%

CIN and CDN lazy +? 50 0.003%

Lookarounds 79754 5.19%

Captureless Lookbehinds 22734 1.48%

Fig. 21. Number of regexes using each feature

How often do developers use each of the features for

which we presented new algorithms? To answer this

question, we parsed and analyzed large corpora of

regexes from previous related work [Davis et al. 2018,

2019]. These consists of regexes scrapped online on

StackOverflow, RegexLib, NPM or Pypi packages and

others. Some of these regexes may be written for other

regex languages (like Python), but the syntax is mostly

similar for the features that we studied. We parsed

them all with a JavaScript regex parser we wrote in

OCaml, following the ECMA grammar [ECMA-262

2024] but rejecting unsupported features like backreferences. In total, we parsed and analyzed

1536196 out of 1755587 regexes (87.5%). Figure 21 reports how many regexes include each feature.

Note that not all nullable quantifiers can exhibit the semantic mismatch presented in Section 4.1.

For instance, we believe that /L a?b? M*/ would return the same result in both semantics for

any input string. Finding a more precise syntactic characterization of quantifiers that require

BeginLoop/EndLoop instructions is left as future work. For regexes with capture groups inside

quantifiers, our algorithm of Section 4.2 reduces the bytecode size. More than a fourth of regexes

include a nonnullable plus, for which previous techniques unnecessarily duplicate bytecode. The

more elaborate CIN and CDN technique of Section 4.5.3 is only required for a thousand regexes,

and only 50 use a nullable lazy plus, for which we haven’t found a linear algorithm yet. Around 5%

of all regexes use lookarounds of any kind, and more than a fourth of them only use captureless

lookbehinds and could be handled by our algorithm without any additional memory complexity.

5.2 Implementation
Each of our algorithms has been implemented in a standalone OCaml NFA simulation engine

of around 3.5K lines of code (of which 350 are for parsing), available as an artifact. This engine

supports all the features presented here, as well as character classes, backslash sequences, anchors

and counted repetition. However regex flags, named groups, Unicode, hexadecimal and octal

escapes have not yet been implemented, although they do not represent additional algorithmic

complexity. Backreferences are not supported. The three different capture register implementations

of Section 4.6 can be used. The engine comes with a differential fuzzer that randomly generates

regexes and strings and compares the result to Irregexp. This helped us discover the semantic bug

of Section 4.1. Since then, all our algorithms went through hours of fuzzing and millions of tests

without reporting any mismatch.

We implemented several of our algorithms in V8Linear. Three of them have been merged into

V8Linear: the semantic adaptation for nullable quantifiers (Section 4.1), the linear construction for

nonnullable plus (Section 4.5), and the captureless lookbehind algorithm (Section 4.4). These three

algorithms have been reviewed by V8 maintainers and tested against various JavaScript test suites,

including browser test suites and the official Test262 JavaScript conformance test suite [TC39 2010].

We also contributed some of our own tests to the V8 test suite covering our contributions and

documenting previous bugs of V8Linear. We are currently working on implementing the other

algorithms, starting with the clock algorithm for Capture Reset (Section 4.2).
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Fig. 22. Capture Reset Complexity
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Fig. 23. NonNullable Plus Complexity
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Fig. 24. CDN Complexity
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Fig. 25. Captureless Lookbehind Complexity
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Fig. 26. Lookarounds Regex-Complexity
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Fig. 27. Lookarounds String Complexity

5.3 Experimental validation of complexity claims
Previous sections provide theoretical arguments to support our algorithmic-complexity claims.

Here, we exemplify these claims on specific families of regexes and strings to confirm that, in

practice, our implementations verify the following: (C1) our capture reset algorithm is linear in |𝑟 |
when the previous V8Linear algorithm is quadratic; (C2) our nonnullable plus construction is linear

in |𝑟 | when the previous V8Linear algorithm is exponential; (C3) our CIN/CDN plus algorithm is

linear in |𝑟 | when the previous V8Linear algorithm is exponential; (C4) our captureless lookbehind
algorithm is linear in both |𝑟 | and |𝑠 | while backtracking is not linear in |𝑠 |; (C5) our unrestricted
lookaround algorithm is linear in both |𝑟 | and |𝑠 | while backtracking is not linear in |𝑠 |. We compare

the following configurations when applicable: [OCaml] our prototype OCaml engine with the linked

list implementation of Section 4.6; [oldV8L] V8Linear before our changes; [newV8L] V8Linear after

our changes; and [Irregexp] the V8 backtracking engine (with compilation to native code enabled).

We modified V8Linear to allow any number of nested plus. For all engines, measurements are

done with the rdtsc instruction to estimate CPU cycles. We measure 10 repetitions of match()
after 10 warmup repetitions and take the median of 5 measurements. We do not measure bytecode

compilation.

(C1) Capture ResetWe evaluate the regex family 𝑟0 = /a/, 𝑟𝑛+1 = /(𝑟𝑛)*/ on string "a100", a
case where the bytecode grows quadratically if one uses the ClearReg instructions of V8Linear. We

compare [OCaml] to [oldV8L] on Figure 22 and confirm that our algorithm behaves linearly. Note

that here [oldV8L] suffers from two sources of regex-size quadraticity: the ClearReg instructions

and the array implementation (Section 4.6).

(C2) NonNullable PlusWe consider the regex family 𝑟0 = /a/, 𝑟𝑛+1 = /𝑟𝑛+/ on string "a100".
We compare [newV8L] to [oldV8L] on Figure 23 and confirm that the construction of Figure 15

avoids the exponential complexity of [oldV8L].
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(C3) Nullable Plus We consider the regex family 𝑟0 = /a|( ˆ )/, 𝑟𝑛+1 = /𝑟𝑛+/ on string "b".
This is a worst case for our algorithm, since each plus is a CDN for which we need to compute

the nullability. After a match is found, each plus also needs to be executed again to reconstruct

the capture group inside all of them. We compare [OCaml] to [oldV8L] on Figure 24. Even in this

worst case, our algorithm exhibits regex-size linearity.

(C4) Captureless LookbehindsTo show linearity in |𝑠 |, we consider the regex /bL a(?<=ba*) M*/
and the string family 𝑠𝑛 ="ba𝑛". On Figure 25, we compare [newV8L] to the backtracking engine

[Irregexp], since [oldV8L] did not support lookbehinds. The backtracking engine exhibits quadratic

complexity, since at each string position it tries to match the lookbehind and reads the string

backward until the beginning. Our algorithm does a single pass over the entire string.

(C5) Lookarounds To show linearity in |𝑟 |, we first consider the regex family 𝑟0 = /(a*)b/,
𝑟𝑛+1 = /a(?=𝑟𝑛)/ on string "a1000b" on Figure 26. This is a worst case for our algorithm, since each

nested lookahead needs to be run in the third step to reconstruct the capture group inside. However,

our algorithm still exhibits regex-size linearity, like the backtracking algorithm which does not

even need to backrtack in this particular case. To show linearity in |𝑠 | in Figure 27, we consider

the regex /cL a(?=a*(?<=c(a*))b) M*/ on the string family 𝑠𝑛 ="ca𝑛b" and compare [OCaml] to

[Irregexp]. Since there are two lookarounds, three passes over the entire string are enough to find

a match and our engine exhibits string-size linearity.

6 RELATEDWORK
LookaroundsWhile captureless lookarounds are reminiscent of regex intersection, it has been

shown that constructing the NFA for a regex with one or more intersections comes with an

exponential size increase in some cases [Gelade and Neven 2012]. Both lookbehinds and lookaheads

are commonly known to only be supported by backtracking engines [RE2 2017]. Recent work has

managed to integrate lookarounds into a derivative-based engine in .NET7 [Moseley et al. 2023].

When matching a lookaround, their algorithm interrupts the matching of the main expression to

start a new engine on the lookaround. Consequently, nesting lookarounds in quantifiers results

in polynomial complexity, with the exponent increasing with nesting. Even without lookarounds,

their engine achieves linearity in |𝑠 | but not in |𝑟 |. We achieve linearity in both, even in the

presence of lookarounds. Another work [Davis et al. 2021] has shown that memoized backtracking

engines can support captureless lookaheads in linear time, but with an additional memory overhead

O (|𝑟 | × |𝑠 |). In contrast, our captureless lookbehind algorithm has no memory overhead. Our

unrestricted lookaround algorithm also has a similar space complexity, but it allows captures inside

lookarounds for the first time.

Our captureless lookbehind algorithm was inspired by two observations from related work. First,

lookaheads can be encoded with Alternating Finite Automata (AFAs) [Berglund et al. 2021]. Second,

AFAs can represent LTL formulas and be model-checked linearly if one reads the string (or the

LTL trace) backwards and reverses the direction of the automaton [Finkbeiner and Sipma 2004].

Reversing the regex and reading the string backwards is usually incompatible with capture priority,

but captureless lookbehinds lend themselves well to this treatment. These two observations led to

the development of our lookaround matching algorithms and to their first public description, in

the issue tracker of V8
9
. Later, related work independently proposed a similar algorithm to match

regexes with lookarounds [Mamouras and Chattopadhyay 2024]. In essence, that algorithm is a

simplified version of the first two phases of our algorithm in Section 4.3. Just like in our first phase,

an oracle is built by reversing regexes to indicate the positions at which each lookaround holds,

but unlike our algorithms there is no support for capture groups (neither inside lookarounds nor in

9
https://bugs.chromium.org/p/v8/issues/detail?id=14099

https://bugs.chromium.org/p/v8/issues/detail?id=14099
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the main regex). Their optimization to reduce memory usage for lookbehinds is a special case of

the one we present in Section 4.4 when the main expression does not contain capture groups. The

corresponding optimization for lookaheads is not directly applicable when the main regex contains

capture groups (reversing the regex does not preserve capture group priority, so we do not apply

any such transformation).

Mitigating ReDoS ReDoS is a serious security concern for many applications [Davis et al.

2018; Staicu and Pradel 2018]. There exist two main kinds of mitigations. The first one consists in

detecting regexes for which exponential backtracking can happen [Kirrage et al. 2013; Liu et al. 2021;

Parolini and Miné 2022; Shen et al. 2018; Weideman et al. 2016; Wüstholz et al. 2017], and repairing
them when possible (generating equivalent regexes without backtracking explosion) [Chida and

Terauchi 2022, 2023; van der Merwe et al. 2017]. The other consists in only using linear engines

and avoid catastrophic backtracking altogether; this has become the default practice in Rust, Go

and for anyone using the RE2 library. By adding lookarounds to linear engines, our work extends

the applicability of this second ReDoS mitigation. Even simple regexes where backtracking is

exponential because of other constructs (like /L a* M*(?=b)/ on a string of "a"s) can now be

supported by linear engines.

Other Regex Features Recent work [Glaunec et al. 2023; Holík et al. 2023; Turonová et al. 2020]
has explored matching counted repetition with a time complexity independent of the counters.

However, these solutions do not preserve the priority between threads that is needed to support

capture groups. Other work [Schmid 2019] has defined subsets of regexes with backreferences that

can bematched in polynomial time. There existmultiple semantics for backreferences, and [Berglund

and van der Merwe 2017] explored their relative expressive powers. [Borsotti and Trofimovich

2021] has presented algorithms to handle capture groups in longest-match POSIX semantics.

7 CONCLUSION
We have presented novel algorithms for matching most JavaScript regex linearly in the sizes of

both the regex and the input string. These guarantees are crucial for many applications working

with user-provided regexes or strings: without them, applications are susceptible to regex-based

denial-of-service attacks. In the process, we have highlighted several incorrect assumptions in

state-of-the-art linear engines, affecting both complexity and correctness. We have presented the

first algorithm to match unrestricted lookarounds in a linear-time engine, and thereby reduced

the expressivity gap between backtracking and linear approaches. Parts of our work, including

our captureless lookbehind algorithm, are applicable to other linear regex engines, and could be

included in Rust or RE2. We have implemented and experimentally validated the practicality of all

our algorithms, and merged some of them in the V8 JavaScript engine, putting them in the hands

of millions of developers and making it more practical to chose secure-by-default execution.

Our work sheds light on the importance of seemingly minor semantic design choices. For instance,

JavaScript’s semantics for nullable quantifiers requires more complex algorithms than other regex

languages. On the contrary, its capture-reset property enables us to support, for the first time in

any regex language, linear-time matching of capturing lookarounds.

Because of backreferences, JavaScript regexes cannot be fully supported by linear engines. The

current trend in modern languages is to move away from backreferences and provide secure regex

matching, either by default (Rust and Go) or as an alternative (.NET [Moseley et al. 2023]). Our work

shows how to bring these benefits to JavaScript, a language particularly affected by ReDoS [Staicu

and Pradel 2018]. We show that this requires sacrificing very few features (backreferences, counted

repetition, lazy nullable plus). As a future direction, we note that the surprising amount of non-

linearities and semantic subtleties that we uncovered suggests that JavaScript regexes would

strongly benefit from a systematic formalization of the regex language and its engines.
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A EXAMPLE: EXECUTING OUR LOOKAROUNDS ALGORITHM
Consider the regex 𝑟 =/(c)L a(?=a*(?<=c(a*))b) M*/ on string "caab". This regex gets annotated
as follows: /(c)#1L a(?=≶1a*(?<=≶2c(a*)#2)b) M*/.

A.1 First step - Building the oracle

0: Fork 3 1

1: ConsumeAny

2: Jump 0

3: Consume c

4: Fork 5 7

5: Consume a

6: Jump 4

7: WriteOracle 2

Fig. 28. Oracle Bytecode for 𝑟≶2

In our first step, we build the oracle. The oracle has a

two rows (there are two lookarounds) and 5 columns (the

string has 4 characters). For the row of lookaround ≶2, we
consider 𝑟≶2 =/c(a*)/. In that step, we remove the cap-

ture group and SetQuant instructions, use a WriteOracle
instruction and add a .*? prefix. The resulting bytecode

is shown on Figure 28. The first three instructions are for

the lazy prefix. Executing an NFA simulation, in the for-

ward direction, on string "caab" finds matches at posi-

tions 1, 2 and 3 (every position between the "c" and the

"b").

0: Fork 3 1

1: ConsumeAny

2: Jump 0

3: Consume b

4: CheckOracle 2

5: Fork 6 8

6: Consume a

7: Jump 5

8: WriteOracle 1

Fig. 29. Oracle Bytecode for 𝑟≶1

For the first row of the oracle (lookaround ≶1), we consider
𝑟≶1 =/a*(?<=≶2)b/. Since this is a lookahead, we compute

rev(𝑟≶1) =/b(?<=≶2)a*/ and add a .*? prefix. The resulting

bytecode is shown on Figure 29. The inner lookaround ≶2 is
simply compiled to a single CheckOracle instruction which

reads the previous row of the oracle we just computed before.

Executing an NFA simulation, in the backward direction, on

string "caab" also finds matches at positions 1, 2 and 3.

The final oracle is shown on the following table:

String Position 0 1 2 3 4

𝑟≶1 X ✓ ✓ ✓ X
𝑟≶2 X ✓ ✓ ✓ X

A.2 Second step - Matching the main expression and groups #0 and #1

0: Fork 3 1

1: ConsumeAny

2: Jump 0

3: SetReg #0: entry

4: SetReg #1: entry

5: Consume c

6: SetReg #1: exit

7: Fork 8 12

8: SetQuant 1

9: Consume a

10: CheckOracle 1

11: Jump 7

12: SetReg #0: exit

13: Accept

Fig. 30. Bytecode of 𝑟

In the second step, we compile and match

the main expression. Note that the entire looka-

head will be compiled to a single bytecode

instruction CheckOracle 1. We compile the

regex

/.*?((c)#1L a(?=≶1a*(?<=≶2c(a*)#2)b) M*)#0/ and
show its bytecode on Figure 30.

Executing an NFA simulation forward on this

expression will find a best match where group#0
is "caa", group#1 is "c" and group#2 is unde-

fined. The values for groups #0 and #1 are correct
because these groups are defined inside the main

expression. However, group#2 is defined inside a

lookahead.
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A.3 Final step - Getting the value of group#2

0: Fork 1 4

1: SetQuant 2

2: Consume a

3: Jump 0

4: CheckOracle 2

5: Consume b

6: Accept

Fig. 31. Reconstruction Bytecode of 𝑟≶1

We now reconstruct the value of group#2. We can

see that in the match of the second step, the winning

thread last used the oracle for lookahead ≶1 at posi-
tion 3. We compile the lookahead 𝑟≶1 to bytecode. This

time, we do not reverse it and keep capture groups. Its

bytecode is shown on Figure 31. We start the NFA sim-

ulation in a forward direction at position 3. A match

is found, where the lookbehind ≶2 was last used at

position 3, meaning that we need to run it too in order

to get the value of the group#2.

0: Fork 1 6

1: SetQuant 3

2: SetReg #2: entry

3: Consume a

4: SetReg #2: exit

5: Jump 0

6: Consume c

7: Accept

Fig. 32. Reconstruction Bytecode of 𝑟≶2

We reverse and compile 𝑟≶2 to bytecode, without

removing capture groups. Its bytecode is shown on Fig-

ure 32. We start the NFA simuation in a backward di-

rection, starting at position 3. A match is found where

capture group#2 has value "a". We now have the full

results of matching 𝑟 on string "caab": group#0 has
value "caa", group#1 has value "c" and group#2 has

value "a".
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