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Abstract. The ISO standard for the C programming language does
not define semantics for integer-pointer casts. The certified C compiler
CompCert uses an abstract memory model which allows for many opti-
mizations, but in which the behavior of such casts is undefined. In [10],
Kang et al. present a formal memory model that supports integer-pointer
casts semantics, while still allowing common optimizations. We show the
relevance of this new memory model by implementing it in CompCert.
We present the changes that need to be done, both in the way CompCert
transforms C programs and in the proofs.
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1 Introduction

When compiling critical software written in C, one expects from the compiler to
not introduce any bugs, or any behavior that wasn’t specified in the C source
code. To meet this expectation, CompCert [13] is a formally verified C compiler.
It uses the Coq Proof Assistant [5] to prove that the compiled code and the
source code have the same observable behavior, as defined by the ISO C Stan-
dard [2]. CompCert also aims to provide performance of the generated code, and
implements several common optimizations. Compiled code runs approximately
10% slower than code compiled with GCC4 -01 [4]. As of today, CompCert is a
trusted compiler; despite many efforts [22], no bug have been discovered within
the verified parts of CompCert. CompCert currently supports all of the ISO C
99 Standard, with very few exceptions [4].

However, the ISO C standard itself does not define semantics for every syntac-
tically valid C program. Many C programs are said to have unspecified behavior
or undefined behavior, meaning that conforming compilers can produce any com-
piled code. Despite the lack of semantics, many C programmers are using such
programs and expect a precise result. This leads to difficult bugs [20] and the
impossibility of proving that the compiled code behaves as expected.

One popular unspecified feature of the C language is the casting between
integer and pointer values. Such casts have many uses in real C programs. For
instance, pointer to integer cast is used in the Linux Kernel or JVM imple-
mentations for bit-wise operations on pointers. Integer arithmetic on pointers is
used in Linux, FreeBSD, QEMU and others [1]. Another common usage is to
use the bit representation of a pointer as an indexing key of a hash table (used
for instance in the C++ standard library). When compiled with most compilers,
those programs behave as expected from the programmers. But these intuitive
semantics have not been formalized in the C standard.

Defining a precise, formal semantics for integer-pointer casting and pointer
manipulation would allow CompCert to compile even more C programs in a
certified way. The semantics of pointer manipulation depends on the memory
model of the compiler. As of today, CompCert uses a logical memory model [14],
where every memory block is an abstract object without a concrete memory
address. Such a memory model enables many optimizations, because a program
can never guess the location of a block and modify it without a pointer (see
section 2). However, integer-pointer casting isn’t possible. Other works have
investigated the use of a concrete memory model, to reflect the memory state of
a real machine [19][16]. But then, most optimizations cannot be done anymore
without changing the behavior of the program.

In [10], Kang et al suggest a quasi-concrete model, in which there are both
logical and concrete memory blocks. The main idea is to use logical blocks by
default, that can allow optimizations, and use concrete blocks when the concrete
address of a memory block is needed.

We implemented this new memory model in CompCert. In this paper, we
discuss this implementation. We show that it is relevant and supports integer-



pointer casts while still allowing common optimizations. We present the difficul-
ties of the implementation, and the changes that needed to be done in CompCert.

At first, we remind the reader about the different memory models in section 2.
Then, we present the work that has been done in CompCert. In section 3, we
show how the definition of memory have been modified to fit into CompCert. In
section 4, we show how the definition of memory injection have been modified.
It changes a lot of proofs in CompCert. In section 5, we present how adding non-
determinism in every language of CompCert prevents us from using the same
correctness proofs. We design a new proof, using mixed simulations. It relies on
the observation that non-deterministic behavior is only encountered when using
the capture function. In section 6, we discuss the implementation of the capture
function. Finally, we discuss in section 7 the results of the implementation and
its effect on optimizations.

2 Preliminaries

2.1 CompCert
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The compiler used in this work is CompCert [3]. It supports most of the
ISO-C-99 Standard. It can generate PowerPC, ARM and x86 assembly code.
Because formal program verification is often done at source level, CompCert is
a promising tool for the development of critical software [6].

Between the source code and the target assembly code, CompCert goes
through 25 passes, including several changes of language, all of which using the
same memory model. The first three parse and convert the source code to Com-
pCert C, and the last three perform printing of the assembly code, assembling
and linking. In the middle, 19 back-end passes perform various transformations,
8 of which are optimizations.

Correctness The parser and most of the back-end passes (see Fig.1.) are
verified with Coq. In CompCert, the behavior of a program is a trace (a list of
I/O operations) and an indication on the program’s termination. The correctness
theorem of CompCert states that the behavior of the generated code is one of
the possible behaviors of the source code (C is non-deterministic). To prove it,
it uses a backward simulation (see section 5).

Optimizations CompCert performs the following optimizations: Instruction
selection, Common sub-expression elimination, Tail call elimination, Dead code
elimination, Function inlining, Branch tuneling, Constant propagation and Reg-
ister allocation [9]. Some examples are given in Appendix, section 10.1.

2.2 Memory Models

In this section, we present the logical and concrete models with their limits,
which motivates the introduction of the quasi-concrete model that has been
implemented in this work.

In C semantics, the memory is divided in several memory blocks, that contain
several memory addresses. Memory blocks can be allocated (through the malloc
function for instance), loaded, freed...A memory block can contain the values
of several variables.

Logical Model The logical model described here is similar to the one used
in [10]. However, it slightly differs from CompCert’s current logical model de-
scribed in [14] (see section 3). In this model, blocks are all logical, meaning that
they are not mapped to a physical memory address. Blocks are a fixed-size array
of values. A validity flag v indicates if the block has been freed. Pointers are a
pair ([,4) of a block identifier and an offset inside that block. The set Block of
blocks is defined with:

Block = {(v,n,c) | v € Bool,n € N,c € Val”}

With a logical model, programs have infinite memory. Moreover, a logical
model can allow functions to have exclusive control over a logical block. When



a block identifier does not escape when calling a function (i.e. if a pointer to
the block identifier cannot be found inside the global variables or the function
arguments), then the called function cannot access the block (see section 3). This
allow for many optimizations (see Figure 2).

However, logical models do not support integer-pointer casts. They can allow
some arithmetic operations on offsets, but it is impossible to get a physical
address from a block.

Concrete Model The concrete model aims to reflect the memory of a real ma-
chine, to give a more intuitive semantics to pointer manipulation. The memory
itself is a 232-sized array of values, and Allocated, a list of allocated blocks.
Blocks are simply a pair of a concrete address and a size.

Block = {(p,n) | p € int32,n € int32}
The concrete memory should require from the allocated blocks to be consistent:
No overflow: ¥(p,n) € Allocated, [p,p + n] CJ0,2%]
No overlap: ¥(p1,m1), (p2,n2) € Allocated, [p1, p1+n1] and [pa, pa+ns] are disjoint.

In the concrete model, integer-pointer cast is possible because concrete addresses
already are integer values.

However, optimizations such as constant propagation and dead allocation
elimination are not supported in many cases, because external functions might
change the value of any address. In the concrete model, there is no ownership of
memory blocks, and every address is always accessible.

Quasi-concrete model In [10], a new memory model is presented. The moti-
vation is to have a memory model which allows integer-pointer casting, but still
supports common optimizations. This is achieved with the following definitions.
A block can be either logical or concrete, in which case it has a concrete address.
This is represented by the value p.

Block = {(v,p,n,c) | v € Bool,n € N ¢ € Val” p € int32 U {undef}}
The concrete blocks need to be consistent:
No overflow: ¥(v,p,n,c) € Block, (p # undefAv = true) = [p,p+n] C ]0,2%]
No overlap: V(p1,n1), (p2,n2) € Block, (p1 # undef A pa # undef A vy = vy = true) =
[p1,p1 + n1] and [pa, p2 + n2| are disjoint.

A pointer is a pair (I,4) of a block identifier and an offset inside that block. If
the block [ starts at the address p # undef, then (I,4) can be cast as the integer
p + i and vice versa (thanks to the property of no overlapping, an integer can
correspond to at most one valid concrete block).

Optimizations are still possible with logical blocks, because they do not have
concrete addresses, and integer-pointer casts are possible with concrete blocks.

To allow as many optimizations as possible, we should use as many logical blocks
as possible. Thus, new blocks should be made logical when allocated.



The capture function However, for each pointer to integer cast, we need a
concrete block. Then we transform each pointer to integer cast by adding a cap-
ture function just before it. This new builtin function transforms a logical block
into a concrete one, giving it a concrete address that still satisfies the memory
consistency. It introduces non-determinism in every language of CompCert (in-
cluding the assembly), because a block can be captured at several addresses.
This is handled in section 5.

The quasi-concrete memory model is described in many details in [10].

extern void g(); extern void g(); extern void g();
int f(void) { int f(void) { int f(void) {
int a = 0; int a = O:

07
int p = (int) &a;
g(); g(); g();

return a; return 0; return aip;

} } }
(a) Logical block example  (b) After CP and DAE  (c) Concrete block example

Fig. 2: Examples of optimizations and casts

Optimization and casts examples Consider the program Fig.2a. Using a
logical memory model, Constant Propagation is allowed, because no pointer to
the block of a is available from g(), and thus the external call cannot change
the value of a. Then, the compiler can replace return a; with return 0;.
After that, Dead Allocation Elimination can remove the allocation of a, now
unused. The optimized program can be seen Fig.2b. Using a concrete model,
the block containing the value of a is mapped to a concrete address. Without
more information on g(), it should be assumed that it might change the value
of a. Thus, the program cannot be optimized. Using the quasi-concrete model,
a new block is allocated for the allocation of a. Since it is new, it is a logical
block, without a concrete address. Thus, g() cannot modify the value of a and
the program can once again be transformed into Fig.2b.

Consider the program Fig.2c, where the address of a is cast as an integer.
Unlike with a concrete model, using a logical model defines no semantics for this
program. With the quasi-concrete model, the block containing the value of a is
transformed into a concrete one just before the cast. No optimization is possible,
because g() might modify any concrete block, but the semantics of the program
is defined.



3 Memory update

To begin, the quasi-concrete memory model described in [10] has been imple-
mented in CompCert. However, the definition has to be changed to adapt to
CompCert’s current memory model [14].

3.1 Adapting the definition to CompCert

In CompCert, the memory is not a list of blocks, but several maps. The first
one, mem_contents, is a map from block identifiers and offsets to memory values.
It describes the content of the memory. The second one, mem_access, is a map
from block identifiers and offsets to permissions. It gives a permission to each
logical address of the memory. The memory also contains the identifier of the
next block to be allocated.

We start by adding to the memory a map mem_concrete from blocks to a
value that is either None, for logical blocks, or Some address, for concrete blocks.

Because the size of blocks was not remembered by CompCert, we add a map
mem_offset_bounds from blocks to a pair of numbers, describing the range of
offsets for which the block has been allocated. We need to add both bounds,
because CompCert does not always allocate blocks starting at offset 0.

CompCert uses the permissions to know what addresses have been freed.
This differs from the block-wise validity boolean described in section 2.2. In
fact, CompCert’s free operation is not performed on whole blocks, but on a
range of offsets of a block. It allows memory blocks to contain more than one
variable.

The new implementation can be found in Appendix, section 10.2.

3.2 Consistency

Because we added concrete addresses to some blocks, we need to define several
consistency properties.

We add the predicate addresses_in_range, implementing the No overflow
property of section 2.2. It states that every allocated address is in the range
10,232 (the first and last address should not be allocated).

We add the predicate no_concrete_overlap, implementing the No overlap
property of section 2.2. Because the permissions are address-wise in CompCert
and blocks can be freed partially, we change the definition of No overlap. Infor-
mally, we use the following definition: for each concrete address, there is at most
one block where the address is inside the allocated range and hasn’t been freed.
This allows allocating blocks over freed memory.

For every memory operation that changes the memory (allocation, store, free,
capture), we prove that it preserves the memory consistency.



3.3 Abstract Analysis

For some optimization passes, CompCert performs abstract analysis of the code.

For this purpose, any function call is analyzed and classed as either public or
private. If the stack block is not accessible for the called function (i.e. if no pointer
to the stack can be found in global variables or the function’s arguments), then
the call is considered private, and CompCert can perform analysis knowing that
the called function cannot change the stack block. However, if such a pointer to
the stack exists in the function’s arguments or in global variables, then the call
is considered public, and the optimizations made are weaker.

With the new memory model, the stack block can also be accessible by a
called function when the block has been captured and assigned to a concrete
address. To reflect that, we changed the abstract memory definition to include
a Boolean that states if the stack might have been captured. We also define its
least upper bound, and change the way functions calls are analyzed to add that
all function calls should be public if the stack block may have been captured.

4 Memory injection

4.1 Memory injection in CompCert

To prove the correctness of many passes, CompCert uses memory injections.
Informally, memory injections are relations between two memories that are true
when the two memories are similar. For instance, this is used when doing op-
timizations, to show that the memory of the source program is similar to the
memory of the optimized programs.

In CompCert, memory injection are parametrized with an injection function,
of type block -> option(block * Z). This function establishes a correspon-
dence between blocks of the source memory and blocks of the target memory.
Informally, if f(b1) = Some(bs,0), then the block b; in the source memory cor-
responds to the block by in the target memory, with a shift in offsets of o. The
values are preserved between the two blocks, and the pointers are modified to
reflect the change of logical addresses. The injection function also define private
and public memory. Public memory is the set of blocks that are mapped to some
other block. These blocks should be preserved by optimizations. Private memory
is the set of blocks that are mapped to None. These blocks are only privately
used and can be changed separately. For instance, when performing an unknown
external call in both the source and target programs, CompCert assumes that it
preserves the memory injection. Thus, the new public memories are equivalent
but the call may have changed the private part.

4.2 Memory injection in the quasi-concrete model

As described in [10], memory injection using the quasi-concrete model should be
stronger.
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Fig. 3: Memory Injection, taken from [10]

To preserve behavior refinement, any successful memory access in the source
memory should succeed as well in the target memory. This has several conse-
quences (Fig. 3). Firstly, when a source concrete block is mapped to another
target block with a given offset in a memory injection, the target should be
concrete and their concrete addresses should differ with the same offset. Finally,
there should be no concrete block in the source’s private memory. Formally:

Vbi,ba,0,p,  f(b1) = (ba,0) A by has address p = by has address p + o

Vb1, f(by) = None = by has address None

These two properties have been added to CompCert’s memory injection. The
proofs of every memory injection in CompCert have been updated.
The new implementation can be found in Appendix, section 10.3.

5 Mixed Simulations

In the quasi-concrete memory model, with the addition of the capture function,
every language of CompCert is now non-deterministic. Indeed, giving a concrete
address to a logical block is a non-deterministic operation, whereas the logical
allocation used so far in CompCert was deterministic.

5.1 Simulations in CompCert and properties

To prove the correctness of CompCert, one must prove that the behavior of the
generated target code is one of the behaviors of the original source code. To do
so, CompCert uses backward simulations between the semantics of the source
code and the generated code. In CompCert, the semantics of each language is
defined. The semantics of a program is a set of states (with initial and final
states) and a relation between states meaning that one can go from one state to
another with a given observable trace.

Definition: Semantics of a program p : Sem(p) = (Statesy, I, F,, Stepy)
where Step, C Statesp x Traces x States, and I, F C States,. t € Traces is a
trace, i.e. a list of observable events (system call, store or load).

A straightforward way to show that two programs p, and p; are semantically
equivalent could be to show that their semantics are bisimulated, meaning that



there exists a relation between states of the source and target semantics such that
every time the source program takes a step to a new state, the target program
takes a step with the same trace to a matching state, and vice versa. However,
such a relation is in general too strong, as it does not allow basic optimizations.

A backward simulation is a weaker simulation that proves semantics preser-
vation while still allowing optimizations.

Definition: Backward Simulation Let sp a source program and tp a target
program. A backward simulation is a relation R such that

- Viel,, 3 €l (i,i') € R

— Vt € Traces, ss1 € Statessp, st1, sta € Statesy,
(ss1,st1) € R A (st1,t,sts) € Stepy, =
dssy € Statessp, (ss1,t, 552) € Stepsy

Informally, each time the target program takes a step to a new state, the source
program also takes a step to a matching state. This is enough to claim that the
target’s behavior is a refinement of the source’s behavior. An example can be
seen Figure 4a. The relation is described with the dashed lines. We can see that
every target behavior matches a source behavior.

Forward Simulations One can similarly define a forward simulation in a sym-
metric way: each time the source program takes a step to a new state, the target
program also takes a step to a matching state. This means that the target’s
behavior extends the source’s behavior. An example can be seen Figure 4b.

Source Target
Source Target N

(a) Example of backward simulation (b) Example of forward simulation

Fig. 4: Examples of simulations
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Theorem: forward to backward If the target language is determinate (a
weaker version of determinism) and the source language is receptive and there is
a forward simulation between the semantics of sp and ¢p, then we can construct
a backward simulation between the semantics of sp and tp. Informally, if the
target language is determinate, then for a given trace, there can be only one
target step. However, with the source language being receptive, there will exist
one matching step for any possible trace. We can then deduce that any target
step is matched with a corresponding source step.

Theorems: simulation composition Let Si, 55,535 be semantics. If there is
a forward simulation between S; and Sy, and between Sy and S3, then there
is a forward simulation between S; and Ss. If there is a backward simulation
between S and S5, and between S, and Ss, then there is a backward simulation
between S7 and Ss.

5.2 Atomic Semantics and properties

Definition: Atomic Semantics Atomic(Statesy,I,, F},, Step,) = (Traces x
Statesy, {[|} xIp, {[|} x Fp, AtomicStep,) where [] is the empty trace and AtomicStep,
is defined as follow:

= (s1,[],82) € Step, = (([},51), [], ([, s2)) € AtomicStep,,
— (s1,ev i t,s9) € Step, = (([], 51), [ev], (¢, s2)) € AtomicStep,
— ((ev :: t,8), [ev], (t,5)) € AtomicStep,

Informally, Atomic of a semantics is the same semantics where steps with mul-
tiple events traces have been replaced with several single-event steps.

Theorem: Factor backward simulation If there is a backward simulation
between S and S5 and S has single events, then there is a backward simulation
between S; and Atomic(Sz).

5.3 Non-determinism

To prove the correctness of the compilation, we need to prove that for every
source C program sp, if tp is the compiled ASM program, then we have a back-
ward simulation between Sem(sp) and Sem(tp).

Previously, in CompCert, the proof of correctness used forward simulations
for almost every pass, then used the forward to backward simulation theorem to
deduce a backward simulation between CompCertC and ASM. More details on
this proof can be found in Appendix, section 10.4.

However, in the quasi-concrete model, the intermediate and target languages
of CompCert are no longer determinate. Indeed, the capture function can give
any address to a logical block, as long as it doesn’t overlap with other blocks.
Thus, the use of forward simulations is no longer relevant.
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5.4 Mixed simulations and properties

To prove the correctness of CompCert with the new memory model, we introduce
mized simulations. Informally, at each state of the semantics, either we have a
local forward simulation, or a local backward simulation. For most steps, we
use forward reasoning (and it can be proved by adapting the previous forward
simulation proof that used to be in CompCert), but for external calls (such
as capture and other unknown functions that might capture blocks), we use a
backward reasoning. This is illustrated Figure 5, with round states being the
states where an external function or a builtin function is called (these states are
called external states). Because the capture function is the only non-deterministic
function of CompCert C, builtin functions and unknown external functions are
the only place where non-deterministic behavior can occur.

Definition: Mixed Simulation Let sp a source program and tp a target pro-
gram. A mixed simulation is a relation R such that

- Viel,, 3 €l (i,i') € R

— Vt € Traces, ss1 € Statessp, st1 € Statesy,, (ss1,st1) € R = (
Forward: AVssa,(ss1,t,ss2) € Steps, == Tsto, (st1,t, sta) € Stepy, V
Backward: Vsto, (st1,t, st2) € Stepy, = 3ss2,(ss1,t,552) € Stepsp )

— Every state where forward reasoning is applied should have local determinacy

Source = B----- Target

Fig. 5: Example of mixed simulation

Theorem: Mixed to Backward simulation If there is a mixed simulation
between S; and S, then there is a backward simulation between Atomic(St)
and Ss.

To prove it, we use the local determinacy and local receptivity of states with
forward reasoning, in a similar way to the Forward to Backward simulation the-
orem. This theorem also requires several hypothesis on the source and target
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languages (single_events, well behaved) that we proved for each mixed sim-
ulation used in the correctness proof.

5.5 The new correctness proof

1. Prove a mixed simulation for each pass between CStrategy and ASM. We can
use the previous forward simulation proof for every non-external states. The
backward simulation between CompCert C and CStrategy is unchanged.

2. We use the mixed to backward simulation theorem on every mixed simula-
tion.

3. We use the factor backward simulation theorem on every backward simula-
tion.

4. We use the composition of backward simulations to deduce a backward sim-
ulation between CompCert C and ASM.

The proof is illustrated Figure 6.

CompCert C (M CStrategy ¢ 1. mixed > Clight < 1. mixed , 1. mixed > Mach < 1. mixed s ASM

A

3. backward 2. backward
2. backward 2. backward 2. backward

atomic(CStrategy) atomic(Clight) atomic(. .. ) atomic(Mach)

NP A N

3. backward 3. backward 3. backward

4. backward

Fig. 6: The new correctness proof

6 Adding The Capture Function

In this section, the implementation has been done by Juneyoung Lee.

The capture function is the new builtin function to turn logical blocks into
concrete blocks. To be sure that casting from pointer to integer is always possible,
the capture function should be called before every such cast.
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The function is added in the first verified pass of CompCert, when translating
CompCert C programs into Clight.

The results can be seen on the Figure 7. We can notice the capture of the
memory block of a just before casting its address to an integer.

int main() { int main(void)
int a = 0; {
int b = (int) &a; int a;
return 0; int b;
} a = 0;
builtin builtin __capture(&a);
b = (int) &a;
return 0;
return 0;
}
(a) C source program (b) Clight program

Fig. 7: CompCert now automatically inserts the capture function before casts

7 Evaluation

The correctness of CompCert with the new memory model hasn’t been entirely
proved yet. The remaining proofs are most of the proofs of mixed simulations.
However, we remain confident that such a mixed simulation exists for every pass.
One mixed simulation has been proved (CSEproof, an optimization pass), and
others should be very similar. The intuition behind any mixed simulation proof
is the same: use the previous forward simulation proof to prove a local forward
simulation of non-external states, then use the new properties of external calls
to prove the local backward simulation of external states.

Even if the semantics of casting has not been fully implemented yet, it is
already possible to compile some C programs with our modified version of Com-
pCert. We can see that the new model successfully gives semantics to integer-
pointer casting, but also allow optimizations when using logical blocks. This
is illustrated Figure 8. We can see that constant propagation is done, and the
program returns 0. This is explained by the fact that the memory block of a
is logical, and thus the function £ () has ownership of this memory block. The
compiler deduces that a cannot be accessed by the function g(), and thus per-
forms constant propagation. However, if the block is made concrete, then £ ()
looses ownership of a and constant propagation should not be done. This is il-
lustrated Figure 9, where the memory block of a has to be captured due to the
pointer-to-integer cast.
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extern void g(); 0 Ei x4 =0
int £() { 5: int32[stack (0)] = x4
int a = 0; 4: no
intx q = &a; 3 X3p: 7g” ()
Ee(t)l;lrn a; R
; 1: return x2
} }

Fig. 8: Constant propagation on logical blocks

£0)
extern void g(); x5 =10
int f() { int32 [stack (0)] = x5
int a = 0; x2 = stack (0) (int)

intx q = &a; _ = builtin __capture(x2)

int b = (int) q; nop
g(); x4 = "g” ()
return a; x3 = int32 [stack (0)]

return x3

RN W R OO N 0™

Fig.9: No Constant propagation on concrete blocks

8 Conclusion

We successfully implemented the new memory model in CompCert. We also
changed many definitions (for instance abstract analysis or memory injection)
to reflect the new properties of this model. We designed the correctness proof
to deal with local non-determinism, and although the proof is not finished, we
are confident that the remaining work should be very similar to what we’ve
already done. Casting semantics have not been changed yet, but we believe it
to be straightforward. We already added the capture function when needed.
Currently, we modified or added more than 5 kloc of Coq in CompCert.

This work shows that the memory model introduced in [10] can be used in
CompCert. We can verify that it allows optimizations when logical blocks are
used. The model also allows semantics for any integer-pointer casts that are not
too complicated for a programmer to keep in mind.

We also believe that the work on mixed simulations could be used in other
contexts, when dealing with non-deterministic behaviors. As long as this non-
determinism can be located, we can prove a mixed simulation where forward
simulations wouldn’t be possible, and still use it to construct the backward
simulations needed for compiler correctness.

Future work should first focus on finishing the implementation.
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9 Related Works

Writing programs with undefined behavior can lead to difficult-to-find bugs.
For instance, some compilers can optimize code with the assumption that the
program never encounters undefined behavior. This can result in produced code
that does not behave as expected by the programmers [20].

A first solution to this issue is to identify the code whose optimization is
based on undefined behaviors, as presented in [21].

However, a more common approach is to extend the semantics expressiveness
of the C language, ruling out undefined behaviors. Many works have revolved
around giving a formal semantics to the C language refining the informal se-
mantics of the ISO standard. This is what [10] and this paper aim to achieve by
refining the C semantics for pointer manipulation.

For the same purposes, some have investigated the use of a concrete memory
model for C semantics [19][16]. More recently, [7] and [8] present the use of a
new memory model using symbolic values. The idea is to use symbolic values
instead of expressions to delay their evaluation. This successfully gives semantics
to several C idioms: alignment constraints, bit-fields. . . However, as it is a deter-
ministic semantics, programs that introduce non-deterministic behaviors due to
allocation are still undefined.

In this work, we presented a new approach to deal with non-determinism in
CompCert, and give semantics to every integer-pointer casts and pointer manip-
ulation.

Another approach to deal with finite memories has been used in CompCertTSO [18§],
where all memory operations are done on a single finite logical block. Even if it
uses a different memory model, the authors of [10] are confident that the quasi-
concrete model could handle address threads like CompCertTSO. The quasi-
concrete model could also be used with other works of semantics extension, such
as the union types and strict aliasing of [11] or the universal pointer type of [12].
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10 Appendix

10.1 Optimization examples

int main() { int main() {

int a = 0; int a =0
int b =a + 2; int b =0 + 2;
return a; return O0;
} }
(a) Source (b) Target

Fig. 10: Example of Constant Propagation

int main() { 0
= 0; int main

int a 0
int b =0+ 2; return O0;
return 0; }
}
(b) Target
(a) Source

Fig. 11: Example of Dead Allocation Elimination

int main() {

int a = 0; int main() {

int * p; int a = 0;
*p = 1; int * p;
a = xp; return 0;
return 0; }
}
(b) Target
(a) Source

Fig. 12: Example of Dead Store and Load Elimination
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foo(ptr p) { foo(ptr p) {
var ptr q, int a;
q = malloc(1); //DAE
xq = 123; //DSE
bar (p); bar (p);
a = xq; //DLE
*p = a; xp = 123; //CP
} }
(a) Source (b) Target

Fig. 13: Example with multiple optimizations, taken from [10]

10.2 Memory implementation

The new definition of the memory is the following:

Record mem’ : Type := mkmem {
mem_contents: PMap.t (ZMap.t memval); (x*r [block —> offset —> memval] x)
mem_access: PMap.t (Z —> perm_kind —> option permission);
(**r [block —> offset —> kind —> option permission] =)
mem._concrete: PMap.t (option Z); (**x [block —> option Z] *x)
mem_offset_bounds : PMap.t (ZxZ); (**x [block —> Z % Z | xx)
nextblock: block;
access_max :

forall b ofs, perm_order
nextblock_noaccess:

forall b ofs k, "(Plt b nextblock) —> mem_access#b ofs k = None;
contents_default:

forall b, fst mem_contents#b = Undef;
nextblocks_logical:

forall b, “(Plt b nextblock) —> mem_concrete#b = None;
addresses_in_range:

forall bo addr (INBLOCK: addr-in_block mem_concrete mem_offset_bounds

mem_access addr bo),
in_range addr (1,max_address);

no_concrete_overlap:

forall addr, uniqueness (addr_in_block mem_concrete mem_offset_bounds

mem-_access addr);

’

(mem_access#b ofs Max) (mem_access#b ofs Cur);

10.3 Memory injection

The new definition of memory injection is the following;:

Record inject’ (f: meminj) (ml m2: mem) : Prop :=
mk_inject {
mi_inj:



mem-_inj f ml m2;
mi_freeblocks:

forall b, "(valid_block ml b) — f b = None;
mi_mappedblocks:

forall b b’ delta, f b = Some(b’, delta) —> valid_-block m2 b’;
mi_no_overlap:

meminj_no_overlap f ml;
mi_representable:

forall b b’ delta ofs,

f b = Some(b’, delta) —>

perm ml b (Ptrofs.unsigned ofs) Max Nonempty \/

perm ml b (Ptrofs.unsigned ofs — 1) Max Nonempty —>

delta >= 0 /\ 0 <= Ptrofs.unsigned ofs + delta <= Ptrofs.max_unsigned;
mi_perm_inv:

forall bl ofs b2 delta k p,

f bl = Some(b2, delta) —>

perm m2 b2 (ofs + delta) k p —>

perm ml bl ofs k p \/ “perm ml bl ofs Max Nonempty

10.4 The previous correctness proof

Theorem: Factor forward simulation If there is a forward simulation be-
tween S7 and Sy and Sy has single events, then there is a forward simulation
between Atomic(S7) and Ss.

Correctness proof The previous proof in CompCert used the following rea-
soning:

1. Prove a forward simulation for each pass between CStrategy and ASM. Prove
a backward simulation between CompCert C and Cstrategy.

2. Use the simulation composition theorem to deduce a forward simulation
between CStrategy and ASM

3. Use the Factor forward simulation theorem to deduce a forward simulation
between Atomic(CStrategy) and ASM.

4. Use the forward to backward theorem to deduce a backward simulation be-
tween Atomic(CStrategy) and ASM, as well as the factor backward theorem
to deduce a backward simulation between CompCert C and Atomic(CStrategy).

5. Use the simulation composition theorem to deduce a backward simulation
between CompCert C and ASM.

This proof is illustrated Figure 14.
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Fig. 14: The previous correctness proof



