
Defining and Model-Checking an Epistemic
Temporal Logic with Changes of Observations
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1 Introduction

Epistemic Logics are well known to be a required formalism to describe and
reason about knowledge in distributed systems. Distributed algorithms (also
called protocols) involve agents without complete knowledge of the state of the
system. Therefore, “Any logic of protocols must include as part of it a logic of
knowledge”, as said by Ladner and Reif in [8]. Such systems have been found to
be useful for in many areas, including Game Theory and Artificial Intelligence. A
popular extension of Epistemic Logics is to combine them with Temporal Logics.
Reasoning about the evolution of agents’ knowledge inside a system becomes
possible. For each of these logics, model-checking (deciding if a formula is true
in a given model) is an important problem, as it allows to confront the model of
a system to its specification.

In these settings, agents are usually given a fixed observation for the whole
evolution. Observations describe an agent’s point of view, to model imperfect
information. In this paper, to deal with dynamic changes of observations during
the evolution in a system with imperfect information, we introduce a new logic,
CTL∗K∆. To the best of our knowledge, this is the first time that such changes
are studied. This logic includes branching-time temporal operators, epistemic
operators, and a new one, ∆o, to represent changes of observation. For instance,
the formula ∆oKAX p states that after changing to an observation o, the agent
knows that, on the next step, the proposition p holds.

This logic could be useful for any system where agents can change their ob-
servational power of the system. For instance, in a scenario where there exists
different “security levels” where different levels have access to different infor-
mation. With our logic, it becomes possible to express statements such as “For
an agent with initial observation o1, there exists a point in time where, if the
agent changes his observation to o2, he knows whether or not some proposition
holds” (∆o1F (∆o2(Kp∨K¬p))). Another main motivation to define such a logic
is the work that has been done on Strategy Logic with Imperfect Information [2],
an extension of Strategy Logic [4]. In this logic, agents can change observation
when changing strategies. Before investigating it in the full framework of Strat-
egy Logic, the natural first step was to study the interactions of observation
changes, knowledge and time in a simpler setting, without the strategic aspects.

In Section 2, we first define the logic CTL∗K∆. To begin, we only define it for
single-agent synchronous perfect recall settings. Then, in Section 3, we introduce
an alternative, finitary semantics for the same formulas, that we later prove to be
equivalent to the first one, and easier to model-check. In Section 4, we describe
an algorithm to model-check a formula of CTL∗K∆. Finally, we extend the logic
for multi-agent settings in Section 5.

Related Works Works on epistemic logics are numerous. The first ones started
to investigate logics of knowledge in a static setting [13]. Later, many works have
studied combinations of epistemic and temporal logics. Such logics are said to
be Epistemic Temporal Logics [6].
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In [14], the logic LTLK is defined and model-checked. We use the same k-tree
structure in Section 5 to represent the knowledge of multiple agents.

Without our changes of observations, the combination of CTL with epistemic
logics has been studied before [11][10]. CTL∗, the extension of CTL, has also
been studied with epistemic operators. CTL∗K has been investigated and model-
checked in [7][12][3], in both memoryless and perfect recall settings.

The possibility of dynamically changing observation has been introduced in
Strategy Logic with Imperfect Information [2]. In this logic, an operator (a, x) al-
lows to assign a strategy x to a player a. Strategies are defined with the operator
� x�o, where o is an observation, because strategies for imperfect information
systems can only be defined with regards to some observation. Whenever a strat-
egy is assigned to a player, this player will behave as if he sees the system with
the observation that his strategy was defined with. In that sense, it is possible for
a player to change his observation power if he changes his strategy to another
one using a different observation. A natural extension to Strategy Logic with
imperfect information being epistemic operators, we decided to study how such
changes of observation would interact with the agents’ knowledge, by defining a
dedicated operator.

2 CTL∗K∆

2.1 Syntax

We begin by introducing the syntax of our logic. It contains operators of branching-
time logics, temporal logics and epistemic logics, as well as a new one to indicate
changes of observations. At first, we will study the case where there is only one
agent (and thus only one knowledge operator).

We consider O to be a set of observations, that each represent a possible
observational power of the agent. AP is a set of atomic propositions. Formulas
of CTL∗K∆ can be history formulas ϕ or path formulas ψ.

ϕ := p | ¬ϕ | ϕ ∧ ϕ | Aψ | Kϕ | ∆oϕ

ψ := ϕ | ¬ψ | ψ ∧ ψ | Xψ | ψUψ

Where p ∈ AP and o ∈ O. The temporal operators X and U are meant
to represent the typical next and until operators of temporal logics. A is a
path quantifier, similar to those found in branching-time logics. Intuitively, Aψ
should hold for a history if ψ is true in every possible future. K is an epistemic
operator. Intuitively, Kϕ should be true whenever the agent knows that ϕ is
true. We introduce a new one, ∆o, to represent a change of observation. ϕ is
called a history formula, as we only need to know what happened in the past to
decide if the formula is true. ψ is called a path formula as it also requires the
future evolution of the system.

We can also define the temporal operator R (the release), dual of U . The
path quantifier E , dual of A. The knowledge operator K̄ (possibility), dual of
K . With negation and ∧, we can also define the classical Boolean operators ∨
and →.
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2.2 Semantics

The models on which such formulas can be interpreted are classical Kripke Struc-
ture, with several equivalence relations between states (one for each observation).
Let O = {o1, o2, . . . , om}. A Kripke Structure with observations is a structure
M = (S, Is, oI , T, V,∼o1 , . . . ,∼om) where

S is a set of states.
Is ⊆ S is a set of initial states.

oI is the initial observation.
T ⊆ S × S is a transition relation between states.

V : S → 2AP is a valuation function.
∀oi,∼oi is an equivalence relation between states.

A run or path is an infinite sequence of states π = π0π1 . . . . A history is a
finite sequence of states h = h1 . . . hn.

Observation records Given O a set of observations, we define observations
records to be ordered lists of pairs of observations and natural numbers. Intu-
itively, an observation record represents changes of observations.

Example: r = [(o1, 0), (o2, 3), (o3, 3)] means that the player starts at time 0
with observation o1. It keeps this observation, then at time 3, it first changes to
o2 and then to o3. We use observation records in the semantics to remember the
previous observations of the agent.

We write r[(o, n)] to append a new pair (o, n) to the observation record r.
We write r≤n the record r without the pairs (o,m) where m > n. We write
rn the record r without the pairs (o,m) where m 6= n. We define a function
O(r, n) which gives a tuple of the observations at time n. O(r, n) includes every
observation of rn, as well as the previous one.

Example: Let r = [(o1, 0), (o2, 3), (o3, 3)]. O(r, 0) = (oI , o1),O(r, 1) = O(r, 2) =
(o1), O(r, 3) = (o1, o2, o3) and O(r, 4) = (o3).

On a given model, with an observation record we can define an equivalence
relation between histories (finite sequences of states), with regard to a record.
Two histories are equivalent with regard to the record if the player can’t distin-
guish them by using the observations in the record.
h ≈r h′ iff ∀i < |h|,∀o ∈ O(r, i), h(i) ∼o h′(i) and |h| = |h′|.

Record semantics We first define the intuitive semantics of CTL∗K∆. History
formulas need a history h (finite sequence of previous states) and an observation
record r to be interpreted, to know which history might be considered possible
for the agent. Path formulas are interpreted on a run π (infinite sequence of states
of the model), a point in time (natural number), and an observation record.
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M,h, r |= p iff p ∈ V (last(h))
M,h, r |= ¬ϕ iff M,h, r 6|= ϕ
M,h, r |= ϕ1 ∧ ϕ2 iff (M,h, r |= ϕ1 and M,h, r |= ϕ2)
M,h, r |= Aψ iff ∀π that extends h, we have M,π, |h| − 1, r |= ψ
M,h, r |= Kϕ iff ∀h′ such that h′ ≈r h, we have M,h′, r |= ϕ
M,h, r |= ∆oϕ iff M,h, r[(o, |h| − 1)] |= ϕ
M,π, n, r |= ϕ iff M, (π0 . . . πn), r |= ϕ
M,π, n, r |= ¬ψ iff M,π, n, r 6|= ψ
M,π, n, r |= ψ1 ∧ ψ2 iff (M,π, r, n |= ψ1 and M,π, r, n |= ψ2)
M,π, n, r |= Xψ iff M,π, (n+ 1), r |= ψ
M,π, n, r |= ψ1Uψ2 iff ∃m ≥ n such that ∀k ∈ [n,m[,M, π, k, r |= ψ1

and M,π,m, r |= ψ2

Finally, we say that M = (S, Is, oI , T, V,∼o1 , . . . ,∼om) models ϕ (written
M |= ϕ), if ∀s ∈ Is,M, s, [(oI , 0)] |= ϕ. This definition corresponds to the model-
checking problem that we solve in Section 4.

A few validities of CTL∗K∆
∆o(ϕ1 ∧ ϕ2) ↔ (∆oϕ1 ∧∆oϕ2) (distributivity)
∆o¬ϕ ↔ ¬∆oϕ (self-duality)
∆oAX∆oKϕ ↔ ∆oAXKϕ (redundant change of observation)
∆oKϕ → ∆oK∆oKϕ (positive introspection)

Our Model-Checking approach Once CTL∗K∆ is defined, our goal is to
solve the model-checking problem. Because of perfect-recall semantics, it may
seem that we have to remember the complete history and records when evaluat-
ing a formula. However, our main idea is that we can extract some information
from the history that is sufficient for the evaluation of the formula. Intuitively,
to evaluate a history formula, it is enough to know the current state, the cur-
rent observation and the set of states that the agent believes the system might
be in (this set is later called the Information Set). This new structure to rep-
resent the knowledge is more succinct than remembering entire histories and
records, as there is a finite number of information sets. We start by defining
a new semantics for the same formulas. This semantics uses information sets.
Then, we will present an algorithm to model-check a formula according to these
new semantics.

3 Alternative Semantics

We now introduce another semantics to interpret formulas of CTL∗K∆. In this
semantics, we aim to replace histories and observation records with information
sets (intuitively, the set of states the agent believe it is possible to be in).

3.1 Information sets

In this semantics, history formulas are interpreted on s a state of the model,
I an information set (set of model states) and o the current observation. Path
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formulas are interpreted on π an infinite sequence of states of the model starting
in the current one (we don’t remember the past states), I the information set
and o the current observation.

Preliminary definitions If π = π0π1 . . . is an infinite sequence of states, we write
πn... the infinite sequence πnπn+1 . . . .

We define two functions to update information sets. U∆ updates the set when
a player goes through a change of observation and UT updates the set when the
player moves to a new state. Finally, we define a function II to get the initial
information set from an initial state and an initial observation.

U∆(I, s, o) = {x ∈ I | x ∼o s}
UT (I, s, o) = {x ∈ S | ∃t ∈ I, t→ x and x ∼o s}
II(sI , oI) = {s ∈ S | s ∼oI sI}

When we are in state s with information set I and the observation changes
to o, the new information set is U∆(I, s, o). When we move to a new state s with
information set I and observation o, the new information set is UT (I, s, o)

For a path π and n ∈ N, we write UnT (I, π, o) the successive temporal updates
from π0 to πn.

U0
T (I, π, o) = I and Un+1

T (I, π, o) = UT (UnT (I, π, o), πn+1, o)

3.2 Information Set Semantics

M, s, I, o |= p iff p ∈ V (s)
M, s, I, o |= ¬ϕ iff M, s, I, o 6|= ϕ
M, s, I, o |= ϕ1 ∧ ϕ2 iff (M, s, I, o |= ϕ1 and M, s, I, o |= ϕ2)
M, s, I, o |= Aψ iff ∀π such that π0 = s, we have M,π, I, o |= ψ
M, s, I, o |= Kϕ iff ∀s′ ∈ I, we have M, s′, I, o |= ϕ
M, s, I, o′ |= ∆oϕ iff M, s, U∆(I, s, o), o |= ϕ
M,π, I, o |= ϕ iff M,π0, I, o |= ϕ
M,π, I, o |= ¬ψ iff M,π, I, o 6|= ψ
M,π, I, o |= ψ1 ∧ ψ2 iff (M,π, I, o |= ψ1 and M,π, I, o |= ψ2)
M,π, I, o |= Xψ iff M,π1..., UT (I, π1, o), o |= ψ
M,π, I, o |= ψ1Uψ2 iff ∃n ≥ 0, ∀m ≤ n,M, πm..., U

m
T (I, π, o), o |= ψ1 and

M,πn..., U
n
T (I, π, o), o |= ψ2

3.3 Reduction Theorem

We now have different semantics, that share the same syntax. We will now prove
that these two semantics are equivalent.

To do so, we first notice that, from a history h and an observation record
r, we can get corresponding current state, information set and current observa-
tion. Similarly, from an infinite sequence π, a time n and a record, we can get
corresponding sequence π′ that starts at the current state, information set and
current observation.

We accordingly define two partial functions, FH and FP as follows:
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FH (h, r) = (s, I, o) where
i) s = last(h)
ii) o = last(r≤|h|−1)
iii) I = f(h, r)

FP(π, n, r) = (π′, I, o) where
iv) π′ = πn...
v) o = last(r≤n)
vi) I = f((π0, . . . , πn), r)
FH and FP are partial functions, because FH (h, r) is defined only if r =

r≤|h|−1 and FP(π, n, r) is defined only if r = r≤n.

f is defined inductively as follows: (s is a state, h a history)
f(s, r) = II(s, oI) if r0 is empty
f(s, r) = U∆(U∆(. . . U∆(II(s, oI), s, o1), s, o2) . . . , s, om) if r0 = [o1, o2, . . . , om]

f(h.s, r) = UT (f(h, r), s, last(r≤|h|−1)) if r|h| is empty
f(h.s, r) = U∆(. . . U∆(UT (f(h, r), s, last(r≤|h|−1)), s, o1) . . . , s, om) if r|h| = [o1, . . . , om]

Lemmas
Information Set Lemma If f(h, r) = I, then

I = {s ∈ S | ∃h′, h′ ≈r h and last(h′) = s}.
Proof: This is proved inductively.

– Let s ∈ S and r a record. If r0 is empty, then {s′ ∈ S | ∃h′, h′ ≈r s and last(h′) =
s′} = {s′ ∈ S | s′ ∼oI s} = II(s, oI). This is the definition of f(s, r).

– If r0 = [o1 . . . om], then {s′ ∈ S | ∃h′, h′ ≈r s and last(h′) = s′} = {s′ ∈
S | s′ ∼oi s,∀oi ∈ r0 ∪ {oI}}. This is the definition of f(s, r).

– Let h be a history and r a record. Let or = last(r≤|h|−1). If r|h| is empty
{s′ ∈ S | ∃h′, h′ ≈r h.s and last(h′) = s′}
= {s′ | ∃h′, h′ ≈r h, last(h′)→ s′ and s′ ∼or s}
= {s′ | ∃t ∈ f(h, r), t→ s′ and s′ ∼or s} by induction hypothesis
= UT (f(h, r), s, or).

– Let or = last(r≤|h|−1). If r|h| = [o1 . . . om], then
{s′ ∈ S | ∃h′, h′ ≈r h.s and last(h′) = s′}
= {s′ | ∃h′, h′ ≈r h, last(h′)→ s′ and s′ ∼o s∀o ∈ [o1 . . . om] ∪ {or}}
= {s′ | ∃t ∈ f(h, r), t → s′ and s′ ∼o s∀o ∈ [o1 . . . om] ∪ {or}} by induction
hypothesis
= U∆(. . . U∆(UT (f(h, r), s, or), s, o1) . . . , s, om). �

We now present useful results about the functions FH and FP . The proofs
of the following lemmas can be found in appendix, Section 7.1.

Lemma 1 Let h, h′ and r such that h ≈r h′. Let (s, I, o) = FH (h, r) and
(s′, I ′, o′) = FH (h′, r). We have I = I ′ and o = o′.

Lemma 2 Let (s, I, o) = FH (h, r).
Then, ∀π such that π0 = s, FP(h.π1..., |h| − 1, r) = (π, I, o).

Lemma 3 Let (s, I, o) = FH (h, r). Then, FH (h, r[(o′, |h|−1)]) = (s, U∆(I, s, o′), o′).
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Lemma 4 Let (π′, I, o) = FP(π, n, r). Then, FH (π0 . . . πn, r) = (π′0, I, o).
Lemma 5 Let (π′, I, o) = FP(π, n, r). Then, FP(π, n+1, r) = (π′1..., UT (I, π′1, o), o).
Lemma 6 Let (π′, I, o) = FP(π, n, r).

Then, ∀k ≥ 0,FP(π, n+ k, r) = (π′k..., U
k
T (I, π′, o), o).

Reduction Theorem ∀φ formula of CTL∗K∆,
if φ = ϕ is a history formula, ∀h, r, s, I, o such that FH (h, r) = (s, I, o),
M,h, r |= ϕ iff M, s, I, o |= ϕ,
if φ = ψ is a path formula, ∀π, n, r, π′, I, o such that FP(π, n, r) = (π′, I, o),
M,π, n, r |= ψ iff M,π′, I, o |= ψ.

Proof By induction on φ. Let h, r, s, I, o such that FH (h, r) = (s, I, o). For
each case, we prove 1: if M,h, r |= ϕ then M, s, I, o |= ϕ, and 2: if M, s, I, o |= ϕ
then M,h, r |= ϕ,

– p 1: and 2: We have p ∈ V (last(h)) iff p ∈ V (s), because FH (h, r) =
(s, I, o). Thus, M,h, r |= p iff M, s, I, o |= p.

– ¬ϕ 1: and 2: We have M,h, r 6|= ϕ iff M, s, I, o 6|= ϕ by induction hypoth-
esis.

– ϕ1 ∧ ϕ2 1 and 2: We have M,h, r |= ϕ1 and M,h, r |= ϕ2 iff M, s, I, o |=
ϕ1 and M, s, I, o |= ϕ2 by induction hypothesis.

– Aψ 1: We have ∀π′ extending h, M,π′, |h|−1, r |= ψ. Let π such that π0 = s.
Let us prove that M,π, I, o |= ψ. We have FP(h.π1..., |h| − 1, r) = (π, I, o),
because FH (h, r) = (s, I, o) (Lemma 2). Then by induction, because h.π1...
extends h and M,h.π1..., |h| − 1, r |= ψ, we have M,π, I, o |= ψ.

– Aψ 2: Assume ∀π′ such that π′0 = s, M,π′, I, o |= ψ. Let π an infinite
sequence of states. Let us prove that M,h.π, |h| − 1, r |= ψ. By induction, it
suffices to prove that M, s.π, I, o |= ψ, because FP(h.π, |h|−1, r) = (s.π, I, o)
(Lemma 2). s.π is a run π′ such that π′0 = s, and thus M,h, r |= Aψ.

– Kϕ 1: Assume that ∀h1 ≈r h,M, h1, r |= ϕ. Let s′ ∈ I. Let us prove that
M, s′, I, o |= ϕ. Using the Information Set Lemma, there exists some
h1 ≈r h with last(h1) = s′. We then have FH (h1, r) = (s′, I, o) (Lemma
1). As M,h1, r |= ϕ, we conclude by induction that M, s′, I, o |= ϕ and thus
M, s, I, o |= Kϕ.

– Kϕ 2: Assume that ∀s′ ∈ I,M, s′, I, o |= ϕ. Let h′ such that h′ ≈r h. Let
s′ = last(h′). We have that FH (h′, r) = (s′, I, o) (Lemma 1). Because s′ ∈ I
(Information Set Lemma), by induction we conclude M,h′, r |= ϕ, and
then M,h, r |= Kφ.

– ∆o′ϕ 1: and 2: Using Lemma 3, we have FH (h, r[(o′, |h|−1)]) = (s, U∆(I, s, o′), o′).
Then, by induction, M,h, r[(o′, |h| − 1)] |= ϕ iff M, s, U∆(I, s, o′), o′ |= ϕ.

Let π, n, r, π′, I, o such that FP(π, n, r) = (π′, I, o).

– ϕ With Lemma 4, we have FH (π0 . . . πn, r) = (π′0, I, o) and thus by induc-
tion,M,π0 . . . πn, r |= ϕ iff M,π′0, I, o |= ϕ. Finally,M,π, n, r |= ϕ iff M,π′, I, o |=
ϕ.

– ¬ψ and ψ1 ∧ ψ2 Apply the induction hypothesis.
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– Xψ With Lemma 5, we have FP(π, n+ 1, r≤n) = (π′1..., UT (π′1, I, o), o) and
thus by induction, M,π, n, r |= Xψ iff M,π′, I, o |= Xψ.

– ψ1Uψ2 According to the definitions, it suffices to prove that ∀k ≥ 0 and ψ

subformula of ψ1Uψ2, M,π′k, U
k
T (I, π′, o) |= ψ iff M,π, n + k, r |= ψ. This

result comes from the induction hypothesis and Lemma 6. �

4 Model-Checking CTL∗K∆

Model-Checking problem Given a model M = (S, Is, oI , T, V,∼o1 , . . . ,∼om)
and a history formula ϕ, return yes if M |= ϕ, and no otherwise. Thanks to the
reduction theorem, it suffices to show that, for each s ∈ Is,M, s, II(s, oI), oI |= ϕ.
The algorithm will check the formula according to the information set semantics.

Augmented Model We define an augmented model in which the states are
tuples (s, I, o). Because there is a finite number of states, information sets and
observations, this model is finite. According to the information set semantics,
history formulas can be viewed on this model as state formulas.

From M = (S, I, oI , T, V,∼o1 , . . . ,∼om) we define the augmented model M̂ =
(S′, T ′, V ′), a Kripke Structure.

– S′ = S × 2S × O: states are state of the original model, an observation set
and an observation. There is a finite number of such states.

– (s, I, o) T ′ (s′, I ′, o) iff s T s′ and I ′ = UT (I, s′, o)
– V ′(s, I, o) = V (s). As the algorithm is executed, new atomic propositions

will appear. We will update V ′ accordingly.

We write Mo the Kripke Structure obtained by keeping only the states where
the observation is o. The different Mo are disjoint with regards to T ′.

Model checking a state formula On this model M̂ , we define the func-
tion CheckCTL∗K∆ to determine if a history formula is true in a given state
(Algorithm 1). We assume that we can check if a CTL∗ state formula ϕ is true
in a state s of the Kripke StructureK with the function CheckCTL∗(K, s, ϕ) [5].

Algorithm Correctness To be convinced of the correctness of the algorithm,
it suffices to prove the following properties:

– If ϕ is a formula of CTL∗, CheckCTL∗(Mo, (s, I, o), ϕ) returns true iff
M, s, I, o |= ϕ.

– For each formula Kϕ1 chosen by the algorithm, after the for loop, pφ ∈
V ′(s, I, o) iff M, s, I, o |= Kϕ1

– For each formula ∆o′ϕ1 chosen by the algorithm, after the for loop, pφ ∈
V ′(s, I, o) iff M, s, I, o |= ∆o′ϕ1
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Algorithm 1 Model Checking CTL∗K∆

1: function CheckCTL∗K∆(M̂, (sc, Ic, oc), ϕ)

2: if There exists φ = Kϕ1 or φ = ∆o′ϕ1 a subformula of ϕ such that ϕ1 is a
formula of CTL∗ then

3: Let pϕ1 be a new Atomic Proposition
4: for (s, I, o) ∈ S′ do
5: if CheckCTL∗(Mo, (s, I, o), ϕ1) then
6: V ′(s, I, o) := V ′(s, I, o) ∪ {pϕ1}
7: end if
8: end for
9: Let pφ be a new Atomic Proposition

10: if φ = Kϕ1 then
11: for (s, I, o) ∈ S′ do
12: if pϕ1 ∈ V ′(s′, I, o) for each s′ ∈ I then
13: pφ ∈ V ′(s, I, o)
14: end if
15: end for
16: end if
17: if φ = ∆o′ϕ1 then
18: for (s, I, o) ∈ S′ do
19: if pϕ1 ∈ V ′(s, U∆(I, s, o′), o′) then
20: V ′(s, I, o) := V ′(s, I, o) ∪ {pφ}
21: end if
22: end for
23: end if
24: CheckCTL∗K∆(M̂, (sc, Ic, oc), ϕ[φ← pφ])
25: else
26: CheckCTL∗((Moc , (sc, Ic, oc), ϕ))
27: end if
28: end function

The first property comes from the fact that, once restricted to the CTL∗

operators, the semantics of CTL∗K∆ is identical to CTL∗. We thus have that
CheckCTL∗(Mo, (s, I, o), ϕ) returns true iff Mo, s, I, o |= ϕ. Finally,Mo, s, I, o |=
ϕ is equivalent to M, s, I, o |= ϕ because ϕ is a formula of CTL∗ and the different
Mo are disjoints.

For the second and third properties, we use the previous one to know that
after the first for loop, pϕ1

∈ V ′(s, I, o) iff M, s, I, o |= ϕ1. Then, after the
second loop, pφ ∈ V ′(s, I, o) iff ∀s′ ∈ I, pϕ1

∈ V ′(s′, I, o), which is equivalent
to M, s, I, o |= Kϕ1. Similarly for he third property, pφ ∈ V ′(s, I, o) iff pϕ1

∈
V ′(s, U∆(I, s, o′), o′) which is equivalent to M, s, I, o |= ∆o′ϕ1.

Finally, every formula of CTL∗K∆ is either a formula of CTL∗ or contains a
formula Kϕ1 or∆o′ϕ1 such that ϕ1 is a formula of CTL∗. Because every recursive
call removes one operator K or ∆o′ from the formula, the algorithm eventually
finishes for every formula of CTL∗K∆. We know that the model-checking of
CTL∗ is in PSPACE [5]. Because this function is called for each state of the
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augmented model, for each subformula Kϕ or ∆oϕ, the overall complexity of
the model-checking algorithm for a single player is in EXPTIME.

s1 s2

Fig. 1. M

Example Let M = (S, I, oI , T, V,∼o1 ,∼o2) where S = I =
{s1, s2}, O = {o1, o2}, oI = o1, AP = {q}, o1 is the blind ob-
servation (s1 ∼o1 s2) and o2 is the perfect observation (s ∼o2
s′ iff s = s′). V (s1) = {q} and V (s2) = ∅. The transitions T are
pictured on Fig. 1. The augmented model M̂ is pictured Fig. 2.
We only drew the reachable states (reachable with T ′ or U∆).

Consider that the formula to model-check is ϕ = ∆o2(K q ∨
∆o1KAX q). Intuitively, it means that if the agent changes to the
perfect observation, then either the agent knows that p holds, or
even after changing to the blind observation he knows that in every possible next
step, p holds. After running the algorithm, we get the following valuation:

V ′(s1, {s1, s2}, o1) = {q, pϕ}
V ′(s2, {s1, s2}, o1) = {pϕ}
V ′(s1, {s1}, o1) = {q, p(Kq), p(Kq∨∆o1KAXq), pϕ}
V ′(s2, {s2}, o1) = {p(∆o1KAXq), p(Kq∨∆o1KAXq), pϕ}
V ′(s1, {s1}, o2) = {q, p(Kq), p(Kq∨∆o1KAXq), pϕ}
V ′(s2, {s2}, o2) = {p(∆o1KAXq), p(Kq∨∆o1KAXq), pϕ}
For instance, q ∈ V ′(s1, {s1}, o1) because s ∈ V (s1), p(Kq) ∈ V ′(s1, {s1}, o1)

because ∀s′ ∈ {s1}, q ∈ V ′(s′, {s1}, o1). p(Kq∨∆o1KAXq) ∈ V ′(s1, {s1}, o1) be-
cause p(Kq) ∈ V ′(s1, {s1}, o1) and finally, pϕ ∈ V ′(s1, {s1}, o1) because p(Kq∨∆o1KAXq) ∈
V ′(s1, {s1}, o2).

We see that pϕ is true in every state, and therefore true in the initial states.
We conclude, as expected, that M |= ϕ.

s1, {s1, s2}, o1 s2, {s1, s2}, o1

s1, {s1}, o1 s2, {s2}, o1

s1, {s1}, o2 s2, {s2}, o2

Fig. 2. M̂ , the augmented model

5 Multi-agent setting

We now define CTL∗K∆ for multiple agents. We consider A to be the (finite) set
of agents. We write g the number of agents. In this logic, changes of observation
are public, meaning that every player knows the changes of observations of all
players. This allows agents to reason about another agent’s knowledge.
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5.1 Syntax and intuitive Semantics

Syntax The syntax has to be modified. There is now one knowledge operator
and one change operator for each agent a ∈ A: Ka and ∆o

a.

ϕ := p | ¬ϕ | ϕ ∧ ϕ | Aψ | Kaϕ | ∆o
aϕ

ψ := ϕ | ¬ψ | ψ ∧ ψ | Xψ | ψUψ

Where p ∈ AP, a ∈ A and o ∈ O.

Record Semantics We now need one observation record for each player to
interpret a formula. For most operators, the semantics remains unchanged. We
make the following modifications:

M,h, r1, . . . , rg |= Kaϕ iff ∀h′ s.t. h′ ≈ra h, we have M,h′, r1, . . . , rg |= ϕ
M,h, r1, . . . , rg |= ∆o

aϕ iff M,h, r1, . . . , ra[(o, |h| − 1)], . . . , rg |= ϕ

5.2 k-trees semantics

k-trees We want to define another semantics, similarly to the Information set
semantics defined in Section 3. However, Information sets no longer contain suf-
ficient information to represent the epistemic situation of a multi-agent system.
Indeed, agents need not only to remember what states they believe the system
might be in, but also the states that other agents believe the system might be in,
in case of formulas with nested knowledge operators. For a formula φ of CTL∗K∆
with multiple agent, we write depth(φ) the maximal number of nested knowledge
operators in φ. For a finite number of nested operators k, this information can
conveniently be stored in k-trees, as defined in [14]. The set Tk of k-trees over
the set of states S for g agents is defined inductively as follows:

T0 = {(s, ∅, . . . , ∅) | (g + 1)-tuple, with s ∈ S}
Tk+1 = {(s, U1, . . . , Ug) | s ∈ S and ∀i, Ui ⊆ Tk}
Intuitively, if (s, U1, . . . , Ug) is a k-tree, then s (the root) is the real state of

the system, and each Ui represents the knowledge of agent i. This Ui (the set of
i-children) is itself a set of (k−1)-trees including the knowledge of other agents.

Updating k-trees Similarly to U∆ and UT , we define inductively U∆k and UTk
to update k-trees.

UTk : Tk × S ×Og → Tk

UT0(t, s, o1, . . . , og) = (s, ∅, . . . , ∅)
UTk+1((st, Ut,1, . . . , Ut,g), s, o1, . . . , og) = (s, U1, . . . , Ug)

Where Ui = {UTk(t, s′, o1, . . . , og) | t ∈ Ut,i, s′ ∼oi s, root(t) T s′}

U∆k : Tk ×Og → Tk

U∆0(t, o1, . . . , og) = t
U∆k+1((st, Ut,1, . . . , Ut,g), o1, . . . , og) = (st, U1, . . . , Ug)

Where Ui = {U∆k(t, o1, . . . , og) | t ∈ Ut,i, root(t) ∼oi st}
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Intuitively, when moving to a new state s, each agent i has to update his
knowledge (Ui). The next possible trees will be the update of every tree he
considered possible with a state that is equivalent to the new one using the
current observation (oi). When changing observation, we simply remove the trees
that are no longer equivalent to the actual state.

k-trees Semantics Let t = (s, U1, . . . , Ug). We show here the differences with
the Information Set semantics:
M, t, o1, . . . , og |= p iff p ∈ V (root(t))
M, t, o1, . . . , og |= Aψ iff ∀π such that π0 = root(t),

we have M,π, t, o1, . . . , og |= ψ
M, t, o1, . . . , og |= Kiϕ iff ∀t′ ∈ Ui, we have M, t′, o1, . . . , og |= ϕ

M, t, o1, . . . , o
′
g |= ∆o′

i ϕ iff M,U∆(t, o1, . . . , o
′, . . . , og), o1, . . . , o

′, . . . , og |= ϕ
M,π, t, o1, . . . , og |= ϕ iff M, t, o1, . . . , og |= ϕ
M,π, t, o1, . . . , og |= Xψ iff M,π1..., UT (t, π1, o1, . . . , og), o1, . . . , og |= ψ
M,π, t, o1, . . . , og |= ψ1Uψ2 iff ∃n ≥ 0, ∀m ≤ n,

M, πm..., U
m
T (t, π, o1, . . . , og), o1, . . . , og |= ψ1

and M,πn..., U
n
T (t, π, o1, . . . , og), o1, . . . , og |= ψ2

An adaptation of the reduction theorem can be found in Section 7.2. The
modified model-checking algorithm can be found in Section 7.3. Now that we
successfully defined the data structure that holds the epistemic information and
how to update it, the way to model-checking is similar to the single-agent setting,
with k-trees instead of information sets.

6 Conclusion and Future Works

We successfully defined a logic to capture the dynamic changes of observation.
We introduced an alternative semantics that we proved to be equivalent and
is easier to model-check. This logic can be model-checked using a marking al-
gorithm. We have shown that it can be extended to multi-agent settings with
nested knowledge operators using the k-tree structure defined in [14].

We believe that our work could be insightful for future works on Strategy
Logic with Imperfect Information [2][1], and provide elements for model-checking
epistemic extensions.

Another possible future work could be extending CTL∗K∆. Allowing ∆oψ to
be a path formula instead of a history formula would define a logic that we sus-
pect to be more expressive than CTL∗K∆. We haven’t solved the model-checking
problem for this extension yet. The marking algorithm cannot be applied any-
more because ∆oψ cannot be marked on the states of the augmented model, as
it also requires a run to be interpreted. We believe that we could define a focus
game, as defined in [9]. These games are defined such that there exists a winning
strategy for some player if and only if a model satisfy a given formula. This work
has yet to be done.
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7 Appendix

7.1 Lemmas Proofs

Lemma 1 Let h, h′ and r such that h ≈r h′. Let (s, I, o) = FH (h, r) and
(s′, I ′, o′) = FH (h′, r). We have I = I ′ and o = o′.
Proof: I = I ′ according to the Information Set Lemma. In ii), we see that the
observation only depends on the record and the length of the history. |h| = |h′|
because h ≈r h′ and thus o = o′. �

Lemma 2 Let (s, I, o) = FH (h, r). Then, ∀π such that π0 = s, FP(h.π1..., |h| −
1, r) = (π, I, o).
Proof:

– iv) (h.π1...)n = s = π0 and ∀i ∈ N, (h.π1...)n+i = πi.
– v) o = last(r≤|h|−1) because (s, I, o) = FH (h, r) (ii).
– vi) Because (s, I, o) = FH (h, r) (iii). �

Lemma 3 Let (s, I, o) = FH (h, r). Then, FH (h, r[(o′, |h|−1)]) = (s, U∆(I, s, o′), o′).
Proof:

– i) Because (s, I, o) = FH (h, r) (I).
– ii) Because o′ = last(r[(o′, |h| − 1)]≤|h|−1).
– iii) We have f(h, r[(o′, |h|−1)]) = U∆(f(h, r), last(h), o′). Because (s, I, o) =

FH (h, r) (iii), f(h, r) = I and (i) last(h) = s. Thus, f(h, r[(o′, |h| − 1)]) =
U∆(I, s, o′). �

Lemma 4 Let (π′, I, o) = FP(π, n, r). Then, FH (π0 . . . πn, r) = (π′0, I, o).
Proof:

– i) π′0 = πn because (π′, I, o) = FP(π, n, r) (iv).
– ii) Because (π′, I, o) = FP(π, n, r) (v).
– iii) Because (π′, I, o) = FP(π, n, r) (vi). �

Lemma 5 Let (π′, I, o) = FP(π, n, r). Then, FP(π, n+1, r) = (π′1..., UT (I, π′1, o), o).
Proof: First, FP(π, n+ 1, r) is defined because r = r≤n = r≤n+1.

– iv) Because (π′, I, o) = FP(π, n, r) (iv), π′ = πn... and thus π′1... = πn+1....
– v) Because (π′, I, o) = FP(π, n, r) (v).
– vi) We have f((π0 . . . πn+1), r≤n) = UT (f(π0 . . . πn, r≤n), πn+1, o). Because

(π′, I, o) = FP(π, n, r) (vi), we have f(π0 . . . πn, r≤n) = I. Thus, f((π0 . . . πn+1), r≤n) =
UT (I, π′1, o). �

Lemma 6 Let (π′, I, o) = FP(π, n, r). Then, ∀k ≥ 0,FP(π, n+k, r) = (π′k..., U
k
T (I, π′, o), o).

Proof We proceed by induction. For k = 0, we have to prove (π′0..., I, o) =
FP(π, n+ 0, r), which is our hypothesis. For the inductive case:

– iv) πn+k... = π′k... because (π′, I, o) = FP(π, n, r) (iv).
– v) Because (π′, I, o) = FP(π, n, r) (v) and r = r≤n.
– vi) By induction hypothesis, f(π0 . . . πn+k, r) = UkT (I, π′, o). Then, f(π0 . . . πn+k+1, r) =
UT (UkT (I, π′, o), πn+k=1, o) = Uk+1

T (I, π′, o) because rn+k+1 is empty. �
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7.2 Reduction Theorem for multiple agents

From k ∈ N, a history h and observation record r1, . . . , rg, we can get a corre-
sponding k-tree and current observations. Similarly, from k, an infinite sequence
π, a time n and records, we can get corresponding sequence π′ that starts at the
current state, k-tree and current observations.

We can define two partial functions, FH and FP , similarly to what was done
for the single agent setting, Section 3: FH (k, h, r1, . . . , rg) = (t, o1, . . . , og) and
FP(k, π, n, r1, . . . , rg) = (π′, t, o1, . . . , og).

Finally, the Reduction Theorem can be adapted as follows:
∀φ formula of CTL∗K∆, k = depth(φ),
if φ = ϕ is a history formula, ∀h, r1, . . . , rg, t, o1, . . . , og such that FH (k, h, r1, . . . , rg) =
(t, o1, . . . , og), M,k, h, r1, . . . , rg |= ϕ iff M, t, o1, . . . , og |= ϕ,
if φ = ψ is a path formula, ∀π, n, r1, . . . , rg, π′, t, o1, . . . , og such that FP(k, π, n, r1, . . . , rg) =
(π′, t, o1, . . . , og), M,π, n, r1, . . . , rg |= ψ iff M,π′, t, o1, . . . , og |= ψ.

7.3 Model-Checking a CTL∗K∆ formula for multiple agents

The new extended model is the following: M̂ = (S′1 ∪ · · · ∪ S′depth(ϕ), T
′, V ′).

– ∀i, S′i = Ti ×Og: states are an i-tree and an observation for each player.
– (t, o1, . . . , og) T

′ (t′, o1, . . . , og) iff root(t) T root(t′) and t′ = UTi(t, root(t′), o1, . . . , og)
– V ′(t, o1, . . . , og) = V (root(t)). As the algorithm is executed, new atomic

propositions will appear. We will update V ′ accordingly.

The algorithm is a marking algorithm very similar to what has been described
in Section 4. For each Kiϕ or ∆o

iϕ formula where ϕ is a CTL∗ formula, we first
check ϕ on each state. Then, we mark (t, o1, . . . , og) with pKiϕ if t ∈ Tk with
k ≥ depth(Kϕ) and ∀t′ i-child of t, (t′, o1, . . . , og) has been marked by pϕ. We
mark it with p∆o′

i ϕ
if (t, o1, . . . , oi−1, o

′, . . . , og) has been marked with pϕ.

The number of k-trees has been studied in [14]. Our model-checking algorithm
for multiple agents has non-elementary complexity.


