
Towards Formally Verified Just-in-Time
compilation

Aurèle Barrière, Sandrine Blazy, David Pichardie

IRISA, Celtique
CoqPL, January 25th, 2020

Formally verified static compilation

Veri�ed static compilers
CompCert, CakeML, VeLLVM. . .
Compilation happens statically.
No self-modi�cation of code during execution.

1 21

Formally verified static compilation

Veri�ed static compilers
CompCert, CakeML, VeLLVM. . .
Compilation happens statically.
No self-modi�cation of code during execution.

1 21

Formally verified static compilation

Veri�ed static compilers
CompCert, CakeML, VeLLVM. . .
Compilation happens statically.
No self-modi�cation of code during execution.

1 21

What about Just-in-Time compilation ?

2 21

Veri�cation Challenge
How can we relate this
execution (with interpretation,
execution of compiled code,
on-stack replacement) to the
semantics of the original
source program ?

What about Just-in-Time compilation ?

2 21

Veri�cation Challenge
How can we relate this
execution (with interpretation,
execution of compiled code,
on-stack replacement) to the
semantics of the original
source program ?

What about Just-in-Time compilation ?

2 21

Veri�cation Challenge
How can we relate this
execution (with interpretation,
execution of compiled code,
on-stack replacement) to the
semantics of the original
source program ?

What about Just-in-Time compilation ?

2 21

Veri�cation Challenge
How can we relate this
execution (with interpretation,
execution of compiled code,
on-stack replacement) to the
semantics of the original
source program ?

Just-in-Time compilation

De�nition
Compile parts of the program (source code or bytecode) during its execution.
Interleaves interpreting the unoptimized code, compiling it, and executing the
optimized code.

Exploiting Dynamic information
As the optimization is done during the execution, one can use dynamic
information to speculate on the future behavior of the program.

3 21

Speculative Optimizations in JIT Compilers

Speculative Optimizations
Exploiting dynamic information recorded by a pro�ler allows you to create
specialized versions of the program.

Example
Dynamically-typed language: each + and * polymorphic operator must check
the types of its arguments each time.

Function f () {
int i;
for (i=0; i<N; i++) {
g(a,b,array,i); }}

Function g (a,b,array,i) {
sum[i] = a + array[i];
product[i] = a * (array[i] + b);}

4 21

Speculative Optimizations - Example

Function f () {
int i;
for (i=0; i<N; i++) {
g(a,b,array,i); }}

Function g (a,array,i) {
sum[i] = a + array[i];
product[i] = a * (array[i] + b);}

Speculate on the type of the arguments
We can generate dynamically the following code for g:
Speculation : a is int /\ array[i] is int /\ b = 0
ai = array[i];
sum[i] = int_add(a, ai);
product[i] = int_mult(a, ai);
i = i+1;

Deoptimization
We must provide a way to return to the original version if the speculation does
not hold.

5 21

Executing a program with a JIT

Execution

g pro�ling

g pro�ling
optimizing g

g_opt

g_opt speculation fails
g

Program

Function f():
while (...):
g()

Function g():
...

Function g_opt():
...
Speculation
...

Interleaves execution of optimized and non-optimized functions.
Keep several versions of each function.
Instructions to deoptimize and restore environment.

6 21

Executing a program with a JIT

Execution

g pro�ling

g pro�ling

optimizing g
g_opt

g_opt speculation fails
g

Program

Function f():
while (...):
g()

Function g():
...

Function g_opt():
...
Speculation
...

Interleaves execution of optimized and non-optimized functions.
Keep several versions of each function.
Instructions to deoptimize and restore environment.

6 21

Executing a program with a JIT

Execution

g pro�ling

g pro�ling
optimizing g

g_opt

g_opt speculation fails
g

Program

Function f():
while (...):
g()

Function g():
...

Function g_opt():
...
Speculation
...

Interleaves execution of optimized and non-optimized functions.
Keep several versions of each function.
Instructions to deoptimize and restore environment.

6 21

Executing a program with a JIT

Execution

g pro�ling

g pro�ling
optimizing g

g_opt

g_opt speculation fails
g

Program

Function f():
while (...):
g()

Function g():
...

Function g_opt():
...
Speculation
...

Interleaves execution of optimized and non-optimized functions.
Keep several versions of each function.
Instructions to deoptimize and restore environment.

6 21

Executing a program with a JIT

Execution

g pro�ling

g pro�ling
optimizing g

g_opt

g_opt speculation fails

g

Program

Function f():
while (...):
g()

Function g():
...

Function g_opt():
...
Speculation
...

Interleaves execution of optimized and non-optimized functions.
Keep several versions of each function.
Instructions to deoptimize and restore environment.

6 21

Executing a program with a JIT

Execution

g pro�ling

g pro�ling
optimizing g

g_opt

g_opt speculation fails
g

Program

Function f():
while (...):
g()

Function g():
...

Function g_opt():
...
Speculation
...

Interleaves execution of optimized and non-optimized functions.
Keep several versions of each function.
Instructions to deoptimize and restore environment.

6 21

Related Works on JIT formalization

Veri�ed Just-In-Time Compiler on x86
[Myreen 2010] From a stack-based bytecode to x86. Veri�ed with HOL4.
No optimization. No speculation.

Jitk: A Trustworthy In-Kernel Interpreter Infrastructure
[Wang et al. 2014] Implements in-kernel interpreters, interfaced with CompCert.
No speculative optimization. No self-modifying code.

Correctness of Speculative Optimizations with Dynamic Deoptimization
[Flückiger et al. 2018] An intermediate representation, Sourir, designed for
speculative optimization.
Paper proofs of some speculative optimizations. No mechanized proofs.

7 21

Prototype of a formally verified JIT middle-end with speculative
optimizations

8 21

2 compilation phases: a
middle-end and a backend.

Our prototype
We focus on the manipulation of a JIT IR with speculation, including
middle-end compiling, interpretation, pro�ling. . .

Prototype of a formally verified JIT middle-end with speculative
optimizations

8 21

2 compilation phases: a
middle-end and a backend.

Our prototype
We focus on the manipulation of a JIT IR with speculation, including
middle-end compiling, interpretation, pro�ling. . .

Towards formally verified JIT compilation

A formally veri�ed JIT middle-end prototype

Realistic architecture.
Optimizations, interpretation and speculation.
Modular correctness proofs.
Can be extracted and executed.
JIT correctness theorem.

Component Implementation Proof
Parser OCaml
JIT step Coq 3

Interpreter Coq 3

Constant Propagation Coq 3

Adding speculation Coq 3

Inlining Coq In progress
Pro�ler Ocaml Not needed

9 21

Formally verified compilers

Static Compiler correctness
If compilation succeeds, and the original program has a behavior (safe), then
any behavior of the compiled program matches a behavior of the source
program.

Theorem transf_c_program_correct:
∀ p tp,
transf_c_program p = OK tp→
backward_simulation (Csem.semantics p) (Asm.semantics tp).

JIT correctness
We need an interpreter correctness theorem.
If the original program is safe, then the JIT makes some progress and any of its
possible executions matches a behavior of the source program semantics.

10 21

Backward Simulations for static compilation

Original Program Compiled Program

s1p s2 tp

s′1p s′2 tp

∼

e? e

∼

Behavior re�nement
Every compiled behavior is matched by a source behavior.

11 21

Same Program
In a static compiler, only
the semantic state
changes, not the program.

Backward Simulations for static compilation

Original Program Compiled Program

s1p s2 tp

s′1p

s′2 tp

∼

e

? e

∼

Behavior re�nement
Every compiled behavior is matched by a source behavior.

11 21

Same Program
In a static compiler, only
the semantic state
changes, not the program.

Backward Simulations for static compilation

Original Program Compiled Program

s1p s2 tp

s′1p s′2 tp

∼

e? e

∼

Behavior re�nement
Every compiled behavior is matched by a source behavior.

11 21

Same Program
In a static compiler, only
the semantic state
changes, not the program.

Backward Simulations for static compilation

Original Program Compiled Program

s1p s2 tp

s′1p s′2 tp

∼

e? e

∼

Behavior re�nement
Every compiled behavior is matched by a source behavior.

11 21

Same Program
In a static compiler, only
the semantic state
changes, not the program.

Backward Simulations for static compilation

Original Program Compiled Program

s1p s2 tp

s′1p s′2 tp

∼

e? e

∼

Behavior re�nement
Every compiled behavior is matched by a source behavior.

11 21

Same Program
In a static compiler, only
the semantic state
changes, not the program.

Building JIT Backward Simulations

p

s

Original Program

JIT
prog

s′

JIT state js

∼ match_states

12 21

Building JIT Backward Simulations

p

s

Original Program

JIT
prog

s′

JIT state js

∼ match_states

12 21

JIT correctness theorem

p s
js

js’
p s′

∼ ji

ee silent
+ e

∼ ji’

∼ ji’ < ji

Theorem jit_correctness:
∀ (p:program) (s:state) (js:jit_state) (ji:jit_index),
input_prog p→
match_states p s js ji→
safe p s→
∃ js’, ∃ e,

jit.jit_step js = OK(js’,e) ∧
((∃ s’, ∃ ji’, plus p s (traceof e) s’ ∧ match_states p s’ js’ ji’) ∨
(∃ ji’, match_states p s js’ ji’ ∧ jit_order ji’ ji ∧ silent e)).

13 21

•

•
•••

JIT correctness theorem

p s
js

js’
p s′

∼ ji

ee silent
+ e

∼ ji’

∼ ji’ < ji

Theorem jit_correctness:
∀ (p:program) (s:state) (js:jit_state) (ji:jit_index),
input_prog p→
match_states p s js ji→
safe p s→
∃ js’, ∃ e,

jit.jit_step js = OK(js’,e) ∧
((∃ s’, ∃ ji’, plus p s (traceof e) s’ ∧ match_states p s’ js’ ji’) ∨
(∃ ji’, match_states p s js’ ji’ ∧ jit_order ji’ ji ∧ silent e)).

13 21

•

•

•••

JIT correctness theorem

p s
js

js’

p s′

∼ ji

e

e silent
+ e

∼ ji’

∼ ji’ < ji

Theorem jit_correctness:
∀ (p:program) (s:state) (js:jit_state) (ji:jit_index),
input_prog p→
match_states p s js ji→
safe p s→
∃ js’, ∃ e,

jit.jit_step js = OK(js’,e) ∧
((∃ s’, ∃ ji’, plus p s (traceof e) s’ ∧ match_states p s’ js’ ji’) ∨
(∃ ji’, match_states p s js’ ji’ ∧ jit_order ji’ ji ∧ silent e)).

13 21

••

•

••

JIT correctness theorem

p s
js

js’
p s′

∼ ji

e

e silent

+ e

∼ ji’

∼ ji’ < ji

Theorem jit_correctness:
∀ (p:program) (s:state) (js:jit_state) (ji:jit_index),
input_prog p→
match_states p s js ji→
safe p s→
∃ js’, ∃ e,

jit.jit_step js = OK(js’,e) ∧
((∃ s’, ∃ ji’, plus p s (traceof e) s’ ∧ match_states p s’ js’ ji’) ∨
(∃ ji’, match_states p s js’ ji’ ∧ jit_order ji’ ji ∧ silent e)).

13 21

••
•

•

•

JIT correctness theorem

p s
js

js’
p s′

∼ ji

e

e silent

+ e

∼ ji’

∼ ji’ < ji

Theorem jit_correctness:
∀ (p:program) (s:state) (js:jit_state) (ji:jit_index),
input_prog p→
match_states p s js ji→
safe p s→
∃ js’, ∃ e,

jit.jit_step js = OK(js’,e) ∧
((∃ s’, ∃ ji’, plus p s (traceof e) s’ ∧ match_states p s’ js’ ji’) ∨
(∃ ji’, match_states p s js’ ji’ ∧ jit_order ji’ ji ∧ silent e)).

13 21

••
•

•

•

JIT correctness theorem

p s
js

js’

p s′

∼ ji

e

e silent

+ e

∼ ji’

∼ ji’ < ji

Theorem jit_correctness:
∀ (p:program) (s:state) (js:jit_state) (ji:jit_index),
input_prog p→
match_states p s js ji→
safe p s→
∃ js’, ∃ e,

jit.jit_step js = OK(js’,e) ∧
((∃ s’, ∃ ji’, plus p s (traceof e) s’ ∧ match_states p s’ js’ ji’) ∨
(∃ ji’, match_states p s js’ ji’ ∧ jit_order ji’ ji ∧ silent e)).

13 21

••
••

•

Our JIT IR

Summary

Untyped, simple integer values, simple memory.
Similar to CompCert RTL.
An Assume instruction, the same as in Sourir ([Flückiger et al. 2018]).
Function versions.

The only language of our JIT

No backend compilation yet. Optimized code is also interpreted.
The initial program should not have any speculation, and only one
version per function.

14 21

The Assume instruction

Syntax

Assume (expr list) target (varmap) [synth frame list]

expr list: the speculation
target: deoptimization target
varmap: restore the register environment
synth frame list: restore extra stack frames

Example

Assume (x = 0 , y = 3) F .V1 . lbl5 { (a , 1 0) } []

First, test if (x = 0) and (y = 3) hold.
If not, deoptimize to function F, version V1, line <lbl5>.
Put value 10 in register a.

15 21

JIT optimizations - Inserting Speculation

Speculating on the values of function arguments.
The pro�ler records the values at each function call.

Example

Function F (r1 , r2) :
Version V1 :
<lbl1> Return (r1 + r2)

The new Version

Version V2 :
<lbl0> Assume (r2 = 10) F . V1 .lbl1 { (r1 ,r1) (r2 ,r2) } []
<lbl1> Return (r1 + r2)

F.V1.lbl1: deoptimize to Function F, Version V1, line <lbl1>.

16 21

JIT optimizations - Inserting Speculation

Speculating on the values of function arguments.
The pro�ler records the values at each function call.

Example

Function F (r1 , r2) :
Version V1 :
<lbl1> Return (r1 + r2)

The new Version

Version V2 :
<lbl0> Assume (r2 = 10) F . V1 .lbl1 { (r1 ,r1) (r2 ,r2) } []
<lbl1> Return (r1 + r2)

F.V1.lbl1: deoptimize to Function F, Version V1, line <lbl1>.

16 21

JIT optimizations - Constant Propagation

Optimizes the function based on the previously inserted speculation.

Example

Function F (r1 , r2 , r3) :
Version 1 :
r1 = 4
Assume (r2 = 0) G . V2 .lbl3 { (r1 ,r1) (r2 ,r2) } []
Return r1 + r2 + r3

The optimized version

Version 2 :
r1 = 4
Assume (r2 = 0) G . V2 .lbl3 { (r1 , 4) (r2 ,r2) } []
Return 4 + r3

Veri�cation
Uses a �xpoint solver library from CompCert.

17 21

JIT optimizations - Inlining

Replaces a function call by its code.
Name-mangling and synthesizing new stackframes in Assume.

Changing Assumptions in the inlined code
Assume (r1 = 4) H.V2.lbl7 (r1,r1) in the inlined code becomes
Assume (R1 = 4) H.V2.lbl7 (r1,R1) [f.v.l ret]
Where

R1 is the mangled name of r1.
f.v.l is the location of the instruction after the call in the original caller
function.
ret is the variable of the caller function that receives the callee’s return.

18 21

Proving optimizations correct in our JIT

Reusing CompCert Forward Simulation Methodology
Show that each step of the program before the optimization matches some
steps in the program after optimization.
Forward to backward theorem: a forward simulation implies a backward
simulation.

Proving the JIT correct
We showed that, if each optimization pass is proved, the entire JIT is correct.
Every behavior of the JIT matches a behavior of the original program.

Theorem optimization_correctness:
∀ p ps newp,
optimize ps p = OK (newp)→
spec_wf p→
∃ order, ∃ (r:relation),

bwd_sim p newp order r ∧ reflexive_wf p r.

19 21

Conclusion

A Coq JIT

A Coq model of a realistic JIT architecture.
An executable prototype.
A backward simulation for JIT correctness.

Veri�cation work
Adding an optimization pass in the JIT middle-end can be proved with the
same forward simulation methodology as CompCert.

20 21

Conclusion

A Coq JIT

A Coq model of a realistic JIT architecture.
An executable prototype.
A backward simulation for JIT correctness.

Veri�cation work
Adding an optimization pass in the JIT middle-end can be proved with the
same forward simulation methodology as CompCert.

20 21

Further Works

Sourir Transparency Invariant
From [Flückiger et al. 2018].
Prove that deoptimizing, even when the conditions hold, does not change the
behavior of the program.
Useful in some speculation-speci�c optimizations.

Backend compilation
Using the translation of CompCert ? Its speci�cation doesn’t suit our needs.

21 / 21

Inlining and synthesizing stack frames

	Appendix

