Towards Formally Verified Just-in-Time compilation
Extended Abstract

Auréle Barriére
Univ Rennes, Inria, CNRS, IRISA
aurele.barriere@irisa.fr

Abstract

Just-in-Time compilation consists in interleaving program interpre-
tation and compilation at run-time, to achieve better performance
than standard interpretation. While some of the execution time is
spent compiling, a JIT compiler can leverage run-time information
to make speculative optimizations. These optimizations create opti-
mized versions of functions given some assumptions. While static
compilers have been the topic of many formal verification works,
few have tackled JIT compilation verification. We present our on-
going work about formal verification of a Just-in-Time compiler.

Keywords verified compilation, just-in-time, speculative optimiza-
tions

1 Introduction

Dynamic programming languages tend to postpone program opti-
mization to run-time. These optimizations are typically done by a
Just-in-Time (JIT) compiler in charge of creating, during a program
execution, low-level optimized versions of some functions.

Using JIT compilation to execute a program thus amounts to
using several components. One must have an interpreter to start
the execution of the program. During interpretation, one must run
a profiler to gather dynamic information about this execution. This
profiler detects hot code, portions of code that would benefit from
being optimized, for instance because they are run frequently. Then,
a compiler can create optimized versions of hot code. When inter-
pretation resumes, the next call to these instructions may call the
optimized version. Using a JIT compiler, program execution inter-
leaves interpretation, profiling, dynamic compilation and execution
of optimized code.

As the optimizations are made dynamically, JIT compilation
can use run-time information to create specialized versions. This
technique is called speculative optimization, and is used in most
JIT compilers, such as the JavaScript engine V8 [1], or the Java
JIT Graal [2]. For instance, in a dynamically-typed language, one
could create versions of polymorphic functions that assume the
type or the value of their arguments and optimize them accordingly.
To ensure correctness, the optimizer must add instructions that
check the validity of assumptions each time the optimized version
is called. If the assumption holds again, then one can keep executing
the optimized code. Otherwise, the execution must go back to the
original code, a process often called deoptimization.

Speculative optimization brings new challenges to a dynamic
compiler. One must choose which information to speculate on, how
to check the validity of assumptions, and how to deoptimize.

For static compilers, formal verification works aim at proving
that a compiler does not introduce any bug in the code it produces.
Works such as CompCert [5], CakeML [4] or VeLLVM [8] have
shown that fully-verified, realistic static compilation is feasible.

CogPL’2020, January 25, 2020, New Orleans, LA, USA,
2020.

Sandrine Blazy
Univ Rennes, Inria, CNRS, IRISA
sandrine.blazy@irisa.fr

David Pichardie
Univ Rennes, Inria, CNRS, IRISA
david.pichardie@ens-rennes.fr

A verified compiler such as CompCert guarantees that properties
proved at the source level hold for the compiled code as well.

While formally verified static compilation has been extensively
studied, few works have tackled mechanized formal verification of
JIT compilation. Myreen presented a fully verified JIT compiler [6],
from a small stack-based bytecode to x86. While it tackles success-
fully the issues of verifying self-modifying code, no optimizations
are made and the structure does not resemble these of realistic
dynamic compilers. Wang et al. presented Jitk [7], a verified infras-
tructure for in-kernel interpreters built on top of CompCert. While
it generates code at run-time, it does not implement speculative
optimizations.

The objective of our ongoing work is to study a Coq implemen-
tation of a JIT compiler that preserves the behavior of its input
program. We take interest in distinctive JIT features such as specu-
lative optimizations and deoptimizations.

2 Formalizing Speculative Optimizations

Consider the following example, where + and * are polymorphic
operators:

function f_original (a) {
for (int i=0; i<length; i++) {
sum[i] = a + array[il;
product[i] = a * array[il; } }

If the language is dynamically typed, the interpreted code corre-
sponding to a single iteration needs to check the type of a and array,
then use the correct addition and product methods. Each iteration
thus ends up with a more convoluted control flow:

if (a is int & array[il is int) {
sum[i] = int_add(a, arrayl[il); }

if (a is float & array[i] is float) {
sum[i] = float_add(a, arrayl[il); 3}

if (a is string & array[i] is string) {

sum[i] = string_add(a, array[il); }

if (a is int & array[il] is int) {

product[i] = int_mult(a, arrayl[il); }
if (a is float & array[i] is float) {
product[i] = float_mult(a, array[il); }
if (a is string & array[i] is string) {
product[i] = string_mult(a, arrayl[il); }

i = i+1;

In this example, if previous calls to this code were always done on
integers, one might want to create an optimized version specialized
for integers, to speed up the next calls.

Speculative optimization must include several components. First,
one needs instructions to check the validity of the assumptions.
If the assumptions do not hold, one needs to know where to de-
optimize to, to resume the execution in the unoptimized version.
Finally, in some cases such as the function inlining optimization,
one must be able to synthesize new stackframes to the stack.

Fliickiger et al. formalize speculative optimizations in JIT com-
pilers [3], but with only paper proofs. Their language, Sourir, is a



CoqPL’2020, January 25, 2020, New Orleans, LA, USA,

low-level language, close to RTL (Register Transfer Language), a
standard intermediate representation used in many compilers. It
presents two distinctive features useful for speculation. First, every
function in the program can have both its original version and
specialized ones. This allows creating specialized versions and still
keep the original versions in case we need to deoptimize. Then,
the language includes an assume instruction, which contains a list of
expressions that describe the speculation, a deoptimization target,
some bindings to reconstruct the original environment as well as
additional continuations to add to the stack.

In our previous example, using such a formalism, one could
create the following version:

function f_optimized (a) {
assume (a is int && array[i] is int) f_original.o []

int ai = arrayl[i];

sum[i] = int_add(a, ai);
product[i] = int_mult(a, ai);
i = i+1; 3}

For all subsequent calls to this function, one can now call f_optimized.
If the speculation holds (a and array[i] are indeed integers), the
execution proceeds with this faster version. Otherwise, one must
dynamically redirect the execution to the first instruction at line
o of f_original. The empty brackets indicate that in this case, no
modification to the environment or stack is needed to maintain
correctness.

We draw inspiration from this formalism, and include in our
intermediate representation a similar assume instruction.

3 Proving optimizations of a JIT compiler

In CompCert, every optimization pass is proved with a simula-
tion [5]. To prove such simulations, one needs to prove that for
each step of the source semantics, there exists a series of correspond-
ing steps in the compiled program. This requires having defined
the small-step semantics of all intermediate languages.

We intend to use this semantic simulation approach to prove
correct the optimizations of a JIT compiler. However, we are faced
with some differences. First, our final correctness theorem is ex-
pressed as an interpreter correctness theorem, since the JIT is active
during the entire execution of the program. We must prove that any
JIT execution, with dynamic optimizations, matches the execution
of the original program. Besides, our semantic simulation has to
account for the possibility to go back to unoptimized versions of
functions, which isn’t the case in static compilers.

Finally, speculative optimizations present new challenges to the
verification of optimizations. As presented in Sourir [3], there exists
some optimizations specific to the handling of our assume instruction,
such as inserting them, merging them, moving them etc.

Moreover, traditional static optimizations become more complex
when handling assume instructions. For instance when performing
inlining, consider the case where we have the following functions:

function f_original (x,y) {
return x + y; 3}

function f_optimized (x,y) {
assume (x=0) f_original.o []
return y; 3}

function g_original (a) {
b = f (a, 4);
return (2 * b); }

Auréle Barriére, Sandrine Blazy, and David Pichardie

Function f has two versions. The optimized one speculates on
the value of the first argument. If the assumption does not hold,
the execution returns to f_original.

Now if a JIT compiler wants to inline the call of f in g, it could
simply create the following version, copying the code of f_optimized:

function g_optimized (a) {

X = a;
y = 4;
assume (x=0) f_original.o []
b =y;

return (2 * b); }

While this version is correct if the speculation holds, there will
be an issue when deoptimizing. During the execution of g_optimized,
if the assume fails, we deoptimize to the function f_original where
we successfully compute the sum. But to match the execution of the
original program, one should return from f_original to g_original.
The solution, as done in Sourir [3], consists in synthesizing a new
stackframe when deoptimizing. Intuitively, when deoptimizing,
the execution should match the execution of the original program
without inlining, and thus with an extra stackframe.

When copying the code of f_optimized, we replace the assume in-
struction with assume (x=0) f_original.e [g_original.1], so that after
executing f_original, the execution comes back to g_original, just
after the call to f, at line 1.

Proving speculative optimization passes with a simulation re-
quires proving that any execution of the original version is matched
by an execution of the optimized one, whether the assumptions
hold or not.

4 A formally verified JIT in Coq

Our ongoing work thus consists in implementing and proving a
JIT compiler in Coq. A prototype is being developed, it can be
extracted to Ocaml and executed. Its input and output language
draws inspiration from CompCert RTL and Sourir for the assume
instruction and the function versions. While an input program
contains only one version per function and no such assume, the
JIT will progressively add new optimized versions of functions
with speculation, during the execution. One of our next goals is
to generate lower-level code when optimizing, so the execution
can either use an interpreter for original versions, or call machine
instructions for optimized ones.

Our prototype has proofs of correctness for the interpreter and
some optimizations. Constant propagation has been proved. We also
proved an optimization that adds an assume instruction to a function
by speculating on the values of its parameters. Some optimizations
have yet to be proved, such as function inlining which synthesizes
stackframes. Moreover, some parts are implemented in OCaml
without invalidating our correctness theorem. For instance the
profiler, gathering dynamic information for our speculations, can
return incorrect results. It should affect the performance but not the
correctness of our JIT execution, as deoptimization always presents
a safe way to return to the original program.

We intend to remain as close as possible to CompCert to reuse
libraries and proofs. Our main objective is to show how traditional
static compilation verification techniques can be adapted to prove
the correctness of a JIT compiler.



Acknowledgments This work is supported by a European Re-
search Council (ERC) Consolidator Grant for the project “VESTA”,
funded under the European Union’s Horizon 2020 Framework Pro-
gramme (grant agreement no. 772568).

References

[1] [n.d.]. V8- Google’s high-performance open source JavaScript and WebAssembly
engine. https://v8.dev/.

[2] Gilles Duboscq, Thomas Wiirthinger, Lukas Stadler, Christian Wimmer, Doug
Simon, and Hanspeter Mssenbéck. 2013. An Intermediate Representation for
Speculative Optimizations in a Dynamic Compiler. In Proceedings of the 7th ACM
Workshop on Virtual Machines and Intermediate Languages. ACM, New York, USA.

CoqPL’2020, January 25, 2020, New Orleans, LA, USA,

[3] Olivier Flickiger, Gabriel Scherer, Ming-Ho Yee, Aviral Goel, Amal Ahmed, and Jan

Vitek. 2018. Correctness of speculative optimizations with dynamic deoptimization.
PACMPL (2018).

Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. 2014.
CakeML: a verified implementation of ML. In Proceedings of POPL.

Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun. ACM 52,
7 (2009), 107-115.

Magnus O. Myreen. 2010. Verified just-in-time compiler on x86. In Proceedings of
the Symposium on Principles of Programming Languages, POPL.

Xi Wang, David Lazar, Nickolai Zeldovich, Adam Chlipala, and Zachary Tatlock.
2014. Jitk: A Trustworthy In-Kernel Interpreter Infrastructure. In OSDI ’14.
Jianzhou Zhao, Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic.
2012. Formalizing the LLVM intermediate representation for verified program
transformations. In Proceedings of the Symposium on Principles of Programming
Languages, POPL.


https://v8.dev/

	Abstract
	1 Introduction
	2 Formalizing Speculative Optimizations
	3 Proving optimizations of a JIT compiler
	4 A formally verified JIT in Coq
	References

